期刊文献+

PEMFC启停工况下的阳极氢空混合区域分析

Analysis of hydrogen-air mixing region in PEMFC anode under startstop condition
下载PDF
导出
摘要 质子交换膜燃料电池在启停工况下,一般认为,阳极流道中形成氢空界面,产生阴极高电位,导致阴极材料发生电化学腐蚀。实际上,氢气与空气接触时会发生对流与扩散,阳极流道中将形成氢空混合区域。通过推导氢空混合区域的运动学模型与电解质电势分布数学模型,进行氢空混合区域范围、时间及电解质电势数值计算。结果表明,氢空混合区域导致的阴极高电位持续时间远超氢空界面存在时间;对应的电解质电势为-0.304~-0.260 V;氢空混合区域的分布范围与持续时间受入口气体流速及流道当量直径影响;当量直径每增加0.1 mm,混合区域最大值将增加4 mm,整体阴极高电位的持续时间将延长1.25%。以上结果为阳极流场的设计和启停工况下的控制策略提供了理论依据。 Under the start-stop conditions of proton exchange membrane fuel cells,it is generally acknowledged that the hydrogen-air front forms in the anode flow channel,resulting in high cathode potential,which leads to the electrochemical corrosion of cathode materials.In fact,when hydrogen contacts with air,the convection and diffusion occur,and a hydrogen-air mixing region forms in the anode channel.The range,time and electrolyte potential of the hydrogen-air mixing region were calculated by deriving the kinematics model of the hydrogen-air mixing region and the mathematical model of the electrolyte potential distribution.The results show that the duration time of the cathode high potential caused by the hydrogen-air mixing region is longer than the existence time of the hydrogen-air front,and the corresponding electrolyte potential is-0.304--0.260 V.The distribution range and duration time of the hydrogen-air mixing region are affected by the inlet gas flow rate and the equivalent diameter of the flow channel.For each 0.1 mm increase of the equivalent diameter,the maximum value of the mixing area increases by 4 mm,and the duration time of the overall cathode high potential extends by 1.25%.The above results provide the theoretical basis for the design of the anode flow channel and the control strategy under start-stop conditions.
作者 时贞勃 涂重阳 谭金婷 潘牧 SHI Zhenbo;TU Chongyang;TAN Jinting;PAN Mu(School of Automotive Engineering,Wuhan University of Technology,Wuhan Hubei 430070,China;Hubei key Laboratory of Fuel Cells,Wuhan University of Technology,Wuhan Hubei 430070,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan Hubei 430070,China)
出处 《电源技术》 CAS 北大核心 2024年第6期1018-1024,共7页 Chinese Journal of Power Sources
基金 国家自然科学基金(22109122,22209026)。
关键词 质子交换膜燃料电池 氢空混合区域 启停工况 电解质电势 PEMFC hydrogen-air mixing region start-stop condition electrolyte potential
  • 相关文献

参考文献2

二级参考文献13

  • 1Wei J, Stone C, Steck A E, et al. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membrane formed therefrom[ P]. US: 5 422 411, 1995 - 06- 06.
  • 2Minnesota Mining and Manufacturing Company (3M Center). Crosslinking ion conductive membranes[P]. WO: 99/61141,1999 - 12 - 02.
  • 3Mikhailenko S D, Zaidi S M, Kaliaguine S. Electrical properties of sulfonated polyehter ether ketone/polyetherimide blend membranes doped with inorganic acides[j], J Polymer Science Part B: Polymer Physics, 2000,38(10): 1 386-1 395.
  • 4Martin H, Xavier G. High Temperature Membranes for Solid Polymer Fuel Cells [ M ] . Berkshire: Johnson Matthey Technology Centre, 2001.3- 5.
  • 5Savinell R, Yeager E, Tryk D, et al. A polymer electrolyte for operation at temperatures up to 200℃[j]. J Electrochem Soc,1994, 141 (4) : L46 - L48.
  • 6Balasubramanian L, Wayne H, David O, et al. Polyetheretherketone membranes for elevated temperature PEMFCs[J]. Electrochemical and Solid-State Letters, 2003,6(12) : A282 - A285.
  • 7Savadogo O. Emerging membranes for electrochemical systems: solid polymer electrolyte memes for fuel cell systems[ j ]. j New Materials for Electrochemical Systems, 1998, 1 ( 1 ) :47 - 66.
  • 8Diyle M, Lewittes M E, Roelofs M G , et al. Ionic conductivity of nonaqueous solvent-swollen ionomer membranes based on fluorosulfonate, fluorocarboxylate, and sulfonate fixed ion groups[J]. J Plays Chem B, 2001,105(39): 9 387- 9 394.
  • 9Du X Z, Yuj R, Baolian Y, et al. Performances of proton exchange membrane fuel cells with alternate membranes[j], Phys Chem Chem Phys, 2001, 3(15): 3 175-3 179.
  • 10Fuqiang L, Baolian Y, Danmin X, et al. Nafion/PTFE composite membranes for fuel cell applications[j], J Membrane Science, 2003,212(1 - 2) :213 -223.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部