期刊文献+

多源数据融合的牛只运动行为分析与模型优化研究

Research on cattle movement behavior analysis and model optimization based on multi-source data fusion
下载PDF
导出
摘要 文章通过融合多源数据,构建深度学习模型,对牛只运动行为进行精准分析。采用多种传感器记录空间坐标和时间戳,提取运动轨迹特征,同时通过深度学习模型对牛只运动的动力学特征提取。为确保高质量的行为数据,进行数据预处理及质量控制,并通过混淆矩阵和均方误差等指标进行了全面评估。为牛只运动行为分析提供了可靠的方法,并在实验结果中展现了模型的鲁棒性和泛化能力。 In this study,a deep learning model was built by integrating multi-source data to accurately analyze the movement behavior of cattle.A variety of sensors were used to record spatial coordinates and time stamps to extract motion track features.Meanwhile,dynamic features of cattle motion were extracted by deep learning models.In order to ensure high quality of behavioral data,data preprocessing and quality control are carried out,and comprehensive evaluation is carried out by confounding matrix and mean square error.This study provides a reliable method for the analysis of cattle motor behavior,and demonstrates the robustness and generalization ability of the model in the experimental results.
作者 孟庆伟 徐磊 MENG Qingwei;XU Lei(Guizhou Aerospace Intelligent Agriculture Co.,Ltd.,Guiyang 550000,China)
出处 《中国高新科技》 2024年第9期158-160,共3页
基金 黔科合重大专项字[2020]3009-5。
关键词 牛只运动行为 行为模式识别 多源数据融合 深度学习 模型优化 cattle movement behavior behavior pattern recognition multi-source data fusion deep learning model optimization
  • 相关文献

参考文献1

二级参考文献21

  • 1DAWKINS M S. Behaviour as a tool in the assessment of animal welfare[ J]. Zoology, 2003,106(4) :383 - 387.
  • 2STEVENS B, KARLEN G M ,MORRISON R,et al. Effects of stage of gestation at mixing on aggression, injuries and stress in sows[J]. Applied Animal Behaviour Science, 2015,165(4) :40 -46.
  • 3ERIKSSON L J,ALLIE M C, GREINER R. The selection and application of an HR adaptive filter for use in active soundattenuation[ J]. IEEE Transactions on Acoustics,Speech and Signal Processing, 1987,35(4) :433 -437.
  • 4LOVE E K, BEE M A. An experimental test of noise-dependent voice amplitude regulation in cope’s grey treefrog, Hylachrysoscelis[ J]. Animal Behaviour, 2010, 80(3):509 -515.
  • 5UR M B, NIEZRECKI C. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations[ J]. The Journal of theAcoustical Society of America, 2011,129(4) : 2059 - 2067.
  • 6BEIRENDONCK S V , THIELEN J V, VERBEKE G, et al. The association between sow and piglet behavior [ J ]. Journal ofVeterinary Behavior, 2014,9:107 - 113.
  • 7TALLET C , LINHART P, POLICHT R, et al. Encoding of situations in the vocal repertoire of piglets ( sus scrofa) : a comparisonof discrete and graded classifications[ J]. PLOS ONE, 2013,8(8) : 1 - 12.
  • 8PUPPE B,SCHON P C,TUCHSCHERER A, et al. Castration-induced vocalisation in domestic piglets, Sus scrofa; Complex andspecific alterations of the vocal quality[ J]. Applied Animal Behaviour Science, 2005,95( 1 -2) :67 -78.
  • 9AYDIN A, BAHR C , VIAZZI S, et al. A novel method to automatically measure the feed intake of broiler chickens by soundtechnology [ J]. Computers and Electronics in Agriculture, 2014 , 101(4) : 17 -23.
  • 10WATANABE N,SAKANOUE S, KAWAMURA K, et al. Development of an automatic classification system for eating, ruminatingand resting behavior of cattle using an accelerometer[ J]. Grassland Science, 2008,54(4) : 231 - 237.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部