摘要
文章探讨了人工智能在水质监测管理中的应用,指出了传统水质监测技术的局限性,包括高成本、低时效性、有限的空间覆盖范围和缺乏实时监测等。阐述了人工智能在水质监测中提供实时监测、提高预测准确性和提供决策支持等方面的优势,分析了机器学习算法和深度学习算法在水质监测中的应用。文章提出了人工智能结合传统方法进行多源数据融合建立集成系统的思路,展望了未来的研究方向和应用领域拓展,旨在促进人工智能在水质监测领域的发展,提供更准确、全面和实时的水质监测与评价能,力,为水资源保护和管理提供科学依据。
The application of artificial intelligence in water quality monitoring and management is discussed in this paper,and the limitations of traditional water quality monitoring technology is pointed out,including high cost,low timeliness,limited space coverage and lack of real-time monitoring.This paper expounds the advantages of artificial intelligence in providing real-time monitoring,improving prediction accuracy and providing decision support in water quality monitoring,and analyzes the application of machine learning algorithm and deep learning algorithm in water quality monitoring.The paper also puts forward the idea of combining artificial intelligence with traditional methods to build an integrated system of multi-source data fusion.Finally,the paper looks forward to the future research direction and application field expansion,aiming at promoting the development of artificial intelligence in the field of water quality monitoring,providing more accurate,comprehensive and real-time water quality monitoring and evaluation capabilities,and providing scientific basis for water resources protection and management.
作者
刘光
赵红金
郑蕾
郭中伟
陈成勇
Liu Guang;Zhao Hongjin;Zheng Lei;Guo Zhongwei;Chen Chengyong(Liaocheng Municipal Hydrological Center,Liaocheng 252000,China)
出处
《黑龙江水利科技》
2024年第6期90-94,共5页
Heilongjiang Hydraulic Science and Technology
关键词
人工智能
水质监测
数据模型
artificial intelligence
monitoring of water quality
data model