期刊文献+

电场作用下改进HR神经元模型的动力学行为

Dynamical Behavior of an Improved HR Neuron Model Under Electric Field
下载PDF
导出
摘要 生物神经细胞内钾、钠和钙离子的跨膜运动将伴随着时变的电磁场,其中激发的电场能够实现对生物神经活动的进一步调制.主要运用非线性理论和数值模拟方案,建立并揭示了一类四维Hindmarsh-Rose(HR)神经元模型的时变稳定性以及全局动力学行为.基于理论分析证实了该非自治的模型存在3种类型的平衡点以及时变稳定性,这也为多吸引子共存提供了理论的依据.此外,得益于双参数分岔图,揭示了该模型的自组织特征,包括“梳”状的混沌结构、倍周期分岔甚至加周期分岔模式.与此同时,神经系统不可避免地受到时变的外界电场扰动,从而导致该模型产生更加复杂的放电活动,并借助于吸引域阐明了丰富的多吸引子共存行为,研究结论可以为进一步探讨外电场效应下神经元复杂的动力学特性提供参考. The movement of large amounts of ions,sush as potassium,sodium,and calcium ions,in the nervous system triggers time-varying electromagnetic fields that further regulate the firing activity of neurons.'The discharge characteristics of an improved Hindmarsh-Rose(HR)neuron model under electric field are studied by numerical simulation.Based on the theoretical analysis,it is proved that the non-autonomous model has three kinds of equilibrium points and time-varying stability,which also provides a theoretical basis for the coexistence of multiple attractors.In addition,by two-parametric bifurcation analysis,we also find that the model generally has a comb-shaped chaotic structure and a chaotic(or non-chaotic)period-adding bifurcation mode.Considering that the electric field is inevitably disturbed periodically,the discharge mode of this model is more complex and has abundant co-existing oscillation modes.The results will provide a useful reference for further studying on the complex dynamic characteristics of neurons under electric field.
作者 彭建奎 程万朋 乔帅 PENG Jiankui;CHENG Wanpeng;QIAO Shuai(School of Education,Lanzhou University of Arts and Science,Gansu Lanzhou 730010,China;School of Mathematics and Physics,Lanzhou Jiaotong University,Gansu Lanzhou 730070,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2024年第4期355-365,共11页 Journal of Hebei Normal University:Natural Science
基金 甘肃省高等学校科研项目(2022A-172)。
关键词 神经元模型 放电活动 双参数分岔 共存吸引子 加周期分岔 neuron model firing activity two-parameters bifurcation coexisting attractors period-adding bifurcation
  • 相关文献

参考文献7

二级参考文献89

  • 1Hindmarsh J L and Rose R M 1984 Proc.R Soc.London Ser.B 219 87.
  • 2Holden A V and Fan Y S 1992 Chaos Soliton.Fract.2 221.
  • 3Fan Y S and Holden A V 1992 Chaos Soliton.Fract.2 349.
  • 4Fan Y S and Holden A V 1993 Chaos Soliton.Fract.3 439.
  • 5Wang X J 1993 Physica D 62 263.
  • 6González-Miranda J M 2005 Phys.Rev.E 72 051922.
  • 7González-Miranda J M 2003 Chaos 13 845.
  • 8Innocenti G and Genesio R 2009 Chaos 19 023124.
  • 9Braun H A,Wissing H and Sch?fer K 1994 Nature 367 270.
  • 10Sejnowski T J 1995 Nature 376 21.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部