期刊文献+

地铁列车冲突不确定性的预测模型及验证方法

Prediction Model with Probabilistic Train Conflicts and the Verification Method for Metro Trains
下载PDF
导出
摘要 地铁运营中,精准高效的列车间冲突预测是调度员行车调整的依据和基础。因此,精准高效地预测列车之间对行车资源请求的冲突一直是行业内持续研究的问题。列车实际运行状态的动态性导致列车间冲突的不确定性。针对目前普遍对于列车间冲突确定性的预测方式,引入地铁列车间冲突不确定性的预测方式,利用样本平均近似法(SAA)对列车运行状态的不确定性进行描述,继而表述列车之间对行车资源请求冲突的不确定性,然后提出一种列车间冲突不确定性的预测模型,并针对模型的预测结果设计验证其预测精度的方案。最后,利用南京地铁3号线列车运行实绩数据进行算例验证,验证结果表明模型预测结果具有较高的准确性。 An accurate and efficient prediction of conflicts between trains is the basis for dispatching in metro network.Therefore,predicting conflicts between trains over the request for operation resources accurately and efficiently has always been a constant research focus in the industry.The dynamic train running states lead to the probabilistic conflict between trains.In view of the commonly used method of predicting the certainty of conflicts between trains,this paper innovatively introduced a prediction method for the probabilistic conflicts between trains,and used the Sample Average Approximation(SAA)method to describe the dynamic train running state,thus describing the probabilistic train conflicts over the request for operation resources.Then,a prediction model for probabilistic train conflicts was proposed,with the scheme designed for verifying the accuracy of the prediction results.Finally,the study used the train record data of Nanjing Metro Line 3 for numerical example verification.The verification results show that the results of model prediction are of high accuracy.
作者 郭竞文 吴涛 段景宁 赵如月 GUO Jingwen;WU Tao;DUAN Jingning;ZHAO Ruyue(Transportation Management Division,Nanjing Metro,Nanjing 210012,Jiangsu,China;School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China)
出处 《铁道运输与经济》 北大核心 2024年第6期190-197,共8页 Railway Transport and Economy
基金 北京市自然科学基金项目(L211028)。
关键词 地铁列车 冲突不确定性预测 列车实绩数据 样本平均近似法 南京地铁3号线 Metro Train Probabilistic Train Conflicts Prediction Train Record Data SAA Nanjing Metro Line3
  • 相关文献

参考文献6

二级参考文献41

  • 1龙时丹.面向高速铁路的全自动运行系统应用[J].中国安全科学学报,2020(S01):92-97. 被引量:3
  • 2胡瑞,徐传玲,冯永泰,文超,王全泉.广深高速铁路列车分类型晚点预测[J].中国安全科学学报,2019,29(S02):181-186. 被引量:5
  • 3Corman F, D' Ariano A, Hansen 1. Disruption Handling in Large Railway Networks[C]//Beijing Jiaotong University. 12th International Conference on Computer System Design and Operation in Railways and Other Transit Systems. Beijing WIT Press, 2010:629 640.
  • 4Hansen I. Railway Timetable &Traffic [M]. Hamburg Eurailpress, 2008.
  • 5Hansen I. Railway Network Timetabling and Dynamic Traffic Management[J]. International Journal of Civil Engineering, 2010, 8(1): 19-32.
  • 6Fabris S, Longo G, Medeossi G.An Implementation of Stochastic Blocking Times to Support Timetable Planning[J]. Journal of Rail Transport Planning & Management, 2011,1(2): 1-13.
  • 7Meer D, Goverde R, Hansen 1. Prediction of Train Running Times Using Historical Track Occupation Data[C]//Yosh Hayashi. World Conference on Transport Research. Lisbon Case Studies of Transport Policy, 2010, 1-22.
  • 8Medeossi G. Stochastic Blocking Time Modeling [C]// I.A Hansen. The 5th International Seminar on Railway Operations Modelling and Analysis. Copenhagen: ELSEVIER, 2013: 1-13.
  • 9D' Ariano A, Pacciarelli D, Pranzo M. A Branch and Bound Algorithm for Scheduling Trains in A Railway Network[J] European Journal of Operational Research, 2007, 183(2): 643-657.
  • 10胡思继.铁路行车组织[M]北京:中国铁道出版社,2009.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部