期刊文献+

基于STOA-XGBoost的风电机组滚动轴承故障诊断

Wind Turbine Rolling Bearing Fault Diagnosis Based on STOA-XGBoost
下载PDF
导出
摘要 为保证风电机组的正常运行,提高风电机组滚动轴承故障诊断的可靠性,提出了一种基于STOA-XGBoost的风电机组滚动轴承故障诊断方法,提取振动信号时域特征作为故障特征,使用乌燕鸥优化算法对极端梯度提升树的超参数进行优化,提高模型的泛化能力和预测精度,利用训练好的模型进行故障诊断。实例表明,此诊断模型可以更加高效地识别风电机组滚动轴承故障。 The proposed method for rolling bearing fault diagnosis in wind turbines is based on STOA-XGBoost,aiming to ensure the smooth operation of wind turbines and enhance the reliability of the diagnostic process.Initially,fault characteristics are extracted from vibration signals through time-domain analysis.The Ultern optimization algorithm is employed to optimize hyperparameters of the extreme gradient lifting tree,so as to promote model generalization and prediction accuracy.Subsequently,the trained model is utilized for efficient fault diagnosis in wind turbines.Experimental results demonstrate that the proposed diagnostic model effectively identifies rolling bearing faults.
作者 贺欢 He Huan(Gansu Agricultural University,Lanzhou 730070,China)
机构地区 甘肃农业大学
出处 《黑龙江科学》 2024年第12期30-33,共4页 Heilongjiang Science
关键词 滚动轴承 故障诊断 风电机组 极端梯度提升树 乌燕鸥优化算法 Rolling bearings Fault diagnosis Wind turbines Extreme gradient elevation tree Sooty Tern optimization algorit
  • 相关文献

参考文献9

二级参考文献129

  • 1中国可再生能源学会风能专业委员会.2012年全国风电设备运行质量调查概述[J].风能,2013(9):36-44. 被引量:9
  • 2李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,41(4):119-122. 被引量:27
  • 3任腊春,张礼达.基于模糊理论的风力机故障诊断专家系统的研究[J].流体传动与控制,2006(6):10-12. 被引量:4
  • 41.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 52.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 63.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 74.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 85.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 96.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139
  • 108.Schapire R EFreund YBartlett Y,et al.Boosting the Margin:A New Explanation for the Effectiveness of Voting Methods.The Annals of Statistics,1998;26(5):1651-1686

共引文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部