期刊文献+

基于频谱图与时序成像的非侵入式负荷监测方法

Non-intrusive Load Monitoring Method Based on Spectrum Map and Time-sequence Imaging
下载PDF
导出
摘要 针对在多种电器设备同时运行的场景下,当前非侵入式负荷监测方法存在分解困难的问题,本文提出了基于频谱图与时序成像的非侵入式负荷监测方法。首先进行负荷分解,利用频谱图变换原理将多种电器设备的聚合电流转换成频谱图矩阵,并通过词嵌入将频谱图矩阵变换到高维;然后通过k-均值聚类算法得到单个电器设备的频谱图矩阵并反变换为相应的时序电流;其次,进行负荷分类,将负荷分解得到的各类电器设备的时序电流转换为图像进行分类,分类模型为训练完成的深度神经网络模型。最后,利用公开数据集进行实验,结果表明所提方法具有较好的分解和分类效果。 In the scenario of multiple electrical equipment running at the same time,the existing non-intrusive load monitoring(NILM)method has problems such as difficulty in decomposition.Aimed at this problem,an NILM method based on spectrum map and time-sequence imaging is proposed in this paper.First,load decomposition is carried out,the aggregated current of multiple electrical equipment is converted into a spectrum map matrix according to the spec-trum map transformation principle,and the spectrum map matrix is expanded to high dimensions through word embed-ding.Afterwards,the spectrum map matrix of one single electrical equipment is obtained using the k-means clustering algorithm and inversely transformed into the corresponding time-sequence current.Second,load classification is per-formed,in which the time-sequence current of multiple electrical equipment obtained by load decomposition is convert-ed into images for classification and a trained deep neural network model is taken as the classification model.Finally,the results of experiment on a public data set show that the proposed method has satisfying decomposition and classifica-tion effects.
作者 杨克新 王小宇 徐斌 琚佳彬 童力 诸葛斌 YANG Kexin;WANG Xiaoyu;XU Bin;JU Jiabin;TONG Li;ZHUGE Bin(School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China;Electric Power Research Institute,State Grid Zhejiang Electric Power Co.,Ltd,Hangzhou 310015,China;Tonglu Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd,Hangzhou 311599,China)
出处 《电力系统及其自动化学报》 CSCD 北大核心 2024年第6期34-42,共9页 Proceedings of the CSU-EPSA
基金 国网浙江省电力有限公司科技项目(5211DS200084)。
关键词 非侵入式负荷监测 频谱图 时序成像 深度学习 深度残差神经网络 non-intrusive load monitoring(NILM) spectrum map time-sequence imaging deep learning depth re-sidual neural network
  • 相关文献

参考文献13

二级参考文献95

共引文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部