期刊文献+

基于正则化多项式回归的癌症患者免疫检查点阻断响应预测

Prediction of immune checkpoint blockade response of cancer patients based on regularized polynomial regression
下载PDF
导出
摘要 探究特征之间的非线性相互作用关系,构建了用于预测癌症患者免疫检查点阻断响应的正则化多项式逻辑斯蒂回归模型.无进展生存期和总生存期的Kaplan-Meier曲线被用来筛选单个特征和联合特征,并据此构建了二次多项式判别函数.结合多项式负对数损失函数和弹性网络惩罚函数,提出了一种正则化多项式逻辑斯蒂回归模型,并通过特征拓维将其转化为线性模型求解.在泛癌、黑色素瘤、非小细胞肺癌和其他癌症数据集上与其他6种方法进行比较,结果表明所提方法取得了更高的免疫检查点阻断响应精度、F_(1)分数和AUC值. This paper explored the nonlinear interaction between features and constructed a regularized polynomial logistic regression model for predicting immune checkpoint blockade response in cancer patients.The Kaplan-Meier curves for progression free survival and overall survival were used to screen for individual and combined features,a quadratic polynomial discriminant function was constructed.Combining the polynomial negative logarithmic loss function and the elastic network penalty function,a regularized polynomial logistic regression model is proposed,and it is transformed into a linear model through feature extension.Compared with other six methods for the data sets of pan cancer,Melanoma,non-small cell lung cancer and other cancers,the proposed method has achieved higher blocking response accuracy,F 1 score and AUC value of immune checkpoints.
作者 王小玉 奚晨曦 李钧涛 Wang Xiaoyu;Xi Chenxi;Li Juntao(Department of Basic Teaching,Zhengzhou Technology and Business University,Zhengzhou 451400,China;College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期94-100,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(61203293) 河南省科技攻关计划(242102211023).
关键词 癌症 正则化 多项式回归 免疫检查点阻断 cancer regularization polynomial regression immune checkpoint blockade
  • 相关文献

参考文献3

二级参考文献62

  • 1吴世农,黄世忠.企业破产的分析指标和预测模型[J].中国经济问题,1987(6):8-15. 被引量:123
  • 2王路平,刘晓华.基于LMI的时滞细胞神经网络的指数稳定性分析[J].河南师范大学学报(自然科学版),2007,35(2):39-41. 被引量:2
  • 3Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 4Shawe-Taylor J,Bartlett P,Williamson R,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
  • 5Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 6Arun Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
  • 7Wang L,Zhu J,Zou H.The doubly regularized support vector machine[J].Statistica Sinica,2006,16:589-615.
  • 8Wang L,Zhu J,Zou H.Hybrid huberized support vector machines for microarray classification and gene selection[J].Bioinformatics,2008,24(3):412-419.
  • 9Zhu J,Rosset S,Hastie T,et al.1-norm support vector machines[J].Advances in Neural Information Processing Systems,2004,16:49-56.
  • 10Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,Series B,1996,58:267-288.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部