期刊文献+

基于多模态深度神经网络的抓取检测方法

Grasp Detection Method Based on Multi-modal Deep Neural Network
下载PDF
导出
摘要 针对机器人抓取检测任务中对未知物体抓取检测精度低的问题,提出了一种多模态深度神经抓取检测模型。首先,在RGB和深度两个通道中引入残差模块以进一步提升网络的特征提取能力。其次,引入多模态特征融合模块进行特征融合。最后,通过全连接层回归融合特征得到最佳抓取检测结果。实验结果表明,在Cornell抓取数据集上,本文方法的图像拆分检测精度达到95.7%,对象拆分检测精度达到94.6%。此外,还通过消融实验证明了引入残差模块可以提高网络抓取检测性能。 A multi-modal deep neural network grasping detection network was proposed to address the issue of low accuracy in robot grasping detection tasks for unknown objects.Firstly,residual modules were introduced in both RGB and depth channels to further enhance the feature extraction capability of the network.Secondly,a multimodal feature fusion module was introduced for feature fusion.Finally,the best grasping detection result was obtained by fusing features through fully connected layer regression.The experimental results demonstrate that the algorithm proposed achieves a precision rate of 95.7% for grasping and 94.6% for object segmentation on the Cornell dataset.In addition,it has been demonstrated through ablation experiments that introducing residual modules can improve the performance of network crawling detection.
作者 严松 张蕾 YAN Song;ZHANG Lei(Electronic Information College,Xi'an Polytechnic of University,Xi'an 710048,China)
出处 《科学技术与工程》 北大核心 2024年第17期7239-7248,共10页 Science Technology and Engineering
基金 陕西省科技厅科技成果转移与推广计划(2020TG-011)。
关键词 抓取检测 机器人 多模态融合 深度学习 grasp detection robotic arm multimodal fusion deep learning
  • 相关文献

参考文献7

二级参考文献57

  • 1李秀智,李家豪,张祥银,彭小彬.基于深度学习的机器人最优抓取姿态检测方法[J].仪器仪表学报,2020(5):108-117. 被引量:32
  • 2王德明,颜熠,周光亮,李勇奇,刘成菊,林立民,陈启军.基于实例分割网络与迭代优化方法的3D视觉分拣系统[J].机器人,2019,41(5):637-648. 被引量:17
  • 3Paolini R, Rodriguez A, Srinivasa S S, Mason M T. A data-driven statistical framework for post-grasp manipulation. The International Journal of Robotics Research, 2014, 33(4):600-615.
  • 4Droniou A, Ivaldi S, Sigaud O. Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71(9):83-98.
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507.
  • 6Bengio Y. Learning deep architectures for AI. Foundations and TrendsoledR in Machine Learning, 2009, 2(1):1-127.
  • 7L?ngkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42:11-24.
  • 8Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 2010, 11:625-660.
  • 9Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) 2009. Florid, USA, 2009. 448-455.
  • 10Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A Y. Multimodal deep learning. In:Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011. 689-696.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部