摘要
【目的/意义】本研究利用BERTopic模型实现对老年人健康信息需求的主题挖掘,可为医疗机构和相关政府部门开展健康信息服务提供依据。【方法/过程】本研究以新浪微博平台中有关老年人健康的微博数据为研究对象,通过BERTopic模型提取需求话题,结合马斯洛需求层次理论对老年人健康信息需求进行演化分析,揭示社交媒体中有关老年人健康的主题内容分布特征,并进一步探究老年人健康信息需求的时间演化路径,为满足老年人的健康信息需求给予老年人更多的关注和支持。【结果/结论】研究结果显示,老年人健康信息需求涵盖财产安全、疫情防控、饮食消化、新冠疫情、医疗诊治、气候影响、骨骼健康、社会关怀、健康知识、科技助老和视觉障碍11个主题。主题演化与突发公共卫生事件关联并存在时间特性。【创新/局限】本研究将BERTopic模型与新浪微博平台数据结合,探索老年人健康信息需求。后续期待从多数据来源进一步挖掘老年人健康信息需求的具体侧重方向。
【Purpose/significance】The BERTopic model can realize the topic mining of the elderly's health information needs and provide a basis for medical institutions and relevant government departments to carry out health information services.【Method/process】This study takes microblog data related to the health of the elderly in Sina Weibo platform as the research object,extracts the demand topic through BERTopic model,and analyzes the evolution of the health information needs of the elderly in combination with Maslow's hierarchy of needs theory to reveal the distribution characteristics of the topic content related to the health of the elderly in social media.And further explore the time evolution path of the health information needs of the elderly,in order to meet the health information needs of the elderly to give more attention and support.【Result/conclusion】The results show that the health information needs of the elderly cover 11 topics,including property safety,epidemic prevention and control,diet and digestion,COVID-19,medical treatment,climate impact,bone health,social care,health knowledge,technology to help the elderly and visual disorders.Thematic evolution is associated with public health emergencies and has temporal characteristics.【Innovation/limitation】In this study,the BERTopic model was combined with the data of Sina Weibo platform to explore the health information needs of the elderly.In the future,it is expected to further explore the specific direction of health information needs of the elderly from multiple data sources.
作者
高春玲
姜莉媛
董天宇
GAO Chunling;JIANG Liyuan;DONG Tianyu(School of Government,Liaoning Normal University,Dalian 116029,China)
出处
《情报科学》
北大核心
2024年第4期111-118,共8页
Information Science