摘要
高镍钛基合金(TiNi)具有密度低、比强度高等优点,广泛应用于机械工程等领域。由于TiNi合金的耐磨性较差,限制了TiNi合金在相关领域的开发和应用。为了提高TiNi合金的减磨抗磨性能,使用激光打标机在其表面设计制备鱼鳞状表面纹理并填充复合固体润滑剂SnAgCu-Al_(2)O_(3)(S-A/TiNi)。在表面纹理角度参数为70°的条件下,研究了不同速度对S-A/TiNi复合材料摩擦学性能的影响。结果表明,当速度为0.037 m/s时,S-A/TiNi-70°的磨痕表面产生温升,提高了固体润滑剂的塑形性能。固体润滑剂在应力的作用下固体润滑剂被挤出织构,促进润滑膜产生,获得最佳的摩擦学性能。当速度较高时(>0.037 m/s),摩擦表面温升快,使得固体润滑剂塑性性能增强。润滑膜在应力的作用下产生破坏,导致摩擦学性能降低。当速度较低(<0.037 m/s)时,摩擦表面产生较多的热量,使得固体润滑剂塑性形变过大。在循环应力作用下润滑膜容易发生剥落,导致基体摩擦学性能降低。
High-nickel titanium-based alloys(TiNi)have the advantages of low density and high specific strength,and are widely used in mechanical engineering and other fields.The poor wear resistance of TiNi alloys limits the development and application of TiNi alloys in related fields.In order to improve the wear-reducing and wear-resistant performance of TiNi alloy,a fish scale-like surface texture was designed and prepared on its surface using a laser marking machine,as well as filled with a composite solid lubricant SnAgCu-Al_(2)O_(3)(S-A/TiNi).The effects of different speeds on the tribological properties of the S-A/TiNi composites were investigated under the surface texture angle parameter of 70°.The results showed that the temperature rise on the abraded surface of S-A/TiNi-70°improved the plasticizing properties of the solid lubricant at a speed of 0.037 m/s.The solid lubricant was extruded from the weave under stress,promoting lubricant film generation and obtaining optimum tribological properties.At higher velocities(>0.037 m/s),the temperature rise of the friction surface was fast,resulting in enhanced plastic properties of the solid lubricant.Damage to the lubrication film under stress results in reduced tribological performance.At lower velocities(<0.037 m/s),more heat was generated on the friction surfaces,making the plastic deformation of the solid lubricant excessive.The lubricant film was prone to spalling under cyclic stress,leading to a reduction in the tribological properties of the substrate.
作者
唐俊
林海波
熊邦英
杨慷
TANG Jun;LIN Haibo;XIONG Bangying;YANG Kang(School of Mechanical Engineering,Sichuan University of Light Chemical Technology,Zigong 643000,China;Innovation Center for Chenguang High Performance Fluorine Material,Sichuan University of Science and Engineering,Zigong 643000,China;School of Mechanical Engineering,Anyang Institute of Technology,Anyang 455000,China)
出处
《功能材料》
CAS
CSCD
北大核心
2024年第6期6174-6184,共11页
Journal of Functional Materials
基金
中国博士后科学基金(2019M662484)
四川轻化工大学晨光高性能氟材料创新中心(SCFY2208)
河南省科技厅科技攻关项目(212102210111)
河南省青年教师重点培训项目(2021GGJS149)。