摘要
为权衡优化经济性和平顺性这两个性能指标,提出一种基于Pareto原理的混合动力系统多目标权衡优化控制策略.该策略首先引入驱动电机的转矩系数,并以此为控制变量.其次以SOC为状态量,以整车的等效燃油消耗和冲击度为目标函数,采用基于Pareto原理的混合动力系统多目标权衡优化策略对控制变量进行优化.在Matlab/Simulink平台上搭建整车模型,并在NEDC+HWFET综合工况下进行仿真验证,结果显示,权衡优化后的等效燃油消耗为1.438 L,而只进行平顺性单目标优化的等效燃油消耗为1.562 L,等效燃油消耗降低了7.9%.无权衡优化的最大冲击度为19.65 m·s-3,权衡优化后的最大冲击度为11.03 m·s-3,降低了43.86%.仿真结果表明,权衡优化后的经济性和平顺性均有所提升.因此验证了基于Pareto原理的混合动力系统多目标权衡优化策略的有效性.
To balance the optimization of both economic efficiency and smoothness in performance metrics,a multi-objective trade-off optimization control strategy for hybrid systems based on the Pareto principle is proposed.This strategy first introduces the torque coefficient of the drive motor as the control variable.Subsequently,the State of Charge(SOC)is considered as the state variable,and the overall vehicle′s equivalent fuel consumption and jerk degree are taken as the objective functions.By employing a multi objective trade-off optimization strategy based on the Pareto principle,the control variables are optimized.A complete vehicle model is constructed on the Matlab/Simulink platform and simulated under combined NEDC and HWFET operating conditions.The results demonstrate that the equivalent fuel consumption by trade-off optimization is 1.438 liters,while the equivalent fuel consumption by single-objective optimiza⁃tion for smoothness is 1.562 liters,reflecting a reduction of 7.9%.The maximum jerk degree without trade-off optimization is 19.65,whereas by trade-off optimization,it is reduced to 11.03,indicating a 43.8%decrease.Simulation results indicate that both the economic efficiency and smoothness are enhanced by the trade-off optimization.Therefore,the effectiveness of the Pareto-based multi-objective trade-off optimization strategy for hybrid systems is validated.
作者
郑清香
ZHENG Qingxiang(Liming Vocational University,Quanzhou 362000,China)
出处
《通化师范学院学报》
2024年第6期33-40,共8页
Journal of Tonghua Normal University
基金
福建省中青年教师教育科研项目(科技类)(JAT201314)
黎明职业大学2021年规划项目(LT202117)。
关键词
混合动力系统
经济性
平顺性
优化策略
hybrid system
economic efficiency
smoothness
optimization strategy