期刊文献+

铜基催化剂电还原二氧化碳为甲酸研究进展

Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid
下载PDF
导出
摘要 电化学二氧化碳还原(ECO_(2)RR)通过可再生能源制备高能量化学品或燃料对碳中和具有巨大价值。尤其是以铜基催化剂进行的ECO_(2)RR,其成本优势和卓越的催化活性使其成为最有前景的策略。在ECO_(2)RR的各种产物中,甲酸作为优秀的储氢材料和内燃机燃料展现出工业化生产潜力。本文针对近年来过渡金属族的铜基催化剂在制备甲酸的研究进展进行了全面的总结,从ECO_(2)RR制甲酸机理出发,综述了铜基催化剂在ECO_(2)RR制甲酸领域取得的重要研究进展,其中以典型催化剂为例分析ECO_(2)RR生成甲酸的策略,包括形貌结构、表面价态、合金化、晶面效应、空位和碳载体等,重点讨论了活性位点数量以及关键中间体*OCHO的形成对甲酸产物选择性的影响,最后总结了该领域面临的挑战以及从原位表征、科学计算和反应条件等角度的展望。 The electrochemical reduction of carbon dioxide(ECO_(2)RR)presents a significant value for carbon neutrality by preparing high-energy chemicals or fuels from renewable energy.Particularly,ECO_(2)RR using copper-based catalysts,with their advantages of low cost and excellent catalytic activity,has emerged as the most promising strategy.In this paper,the research progress of copper-based catalysts in the preparation of formic acid in recent years is comprehensively summarized.The adjusting strategies of ECO_(2)RR to formic acid include morphology,surface valence,alloying,crystal plane effect,vacancy and carbon carrier.The effects of the number of active sites and the formation of key intermediate*OCHO on the selectivity of formic acid products are discussed.Finally,the challenges faced in this field and the prospects from the perspectives of in-situ characterization,scientific calculation and reaction condition optimization are summarized.
作者 陈富强 仲兆平 戚仁志 CHEN Fuqiang;ZHONG Zhaoping;QI Renzhi(School of Energy and Environment,Southeast University,Nanjing 210096,Jiangsu,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2024年第6期3051-3060,共10页 Chemical Industry and Engineering Progress
基金 国家重点研发计划(2018YFB1501405)。
关键词 电催化 二氧化碳还原 铜基催化剂 甲酸 electrocatalysis carbon dioxide reduction Cu-based catalyst formic acid
  • 相关文献

参考文献5

二级参考文献51

  • 1Shulin Zhao,Sheng Li,Tao Guo,Shuaishuai Zhang,Jing Wang,Yuping Wu,Yuhui Chen.Advances in Sn-Based Catalysts for Electrochemical CO_(2) Reduction[J].Nano-Micro Letters,2019,11(4):114-132. 被引量:7
  • 2He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384.
  • 3Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A.
  • 4Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E.
  • 5Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627.
  • 6周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466.
  • 7Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G.
  • 8Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786.
  • 9Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220.
  • 10Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部