期刊文献+

基于卫星反演降水产品的雅砻江流域水情站网优化研究

Study on Optimization of Water Regime Gauge Network in the Yalongjiang River Basin Under Rainfall Retrieval by Satellite
下载PDF
导出
摘要 降水时空变化将会显著影响流域出口径流过程。水情站网是获得降水真值的一种有效方式,在西南地区,因受地形、交通、通信等条件制约,现有水情站网空间代表性不足,需要进行优化调整。以雅砻江流域为例,分析不同区间流域水情站网密度,基于CMORPH卫星反演降水产品与现有水情站网监测降水数据,分析雅砻江流域区间降水的高值区和站网分布薄弱区,得到雅砻江流域需在庆大河、霍曲、力丘河、楞古(新)—孟底沟干流左岸区域、理塘河濯桑区域、九龙河6个区域加强站网布设,以提高降水监测空间代表性。 The temporal and spatial consistency of precipitation will significantly affect the runoff that converges to the outlet of the basin.The hydrological gauge is an effective way to obtain the true value of precipitation.In Southwest region,spatial representativeness of existing hydrological gauge is insufficient due to restrict of terrain,transportation and communication,and it needs to implement optimization and adjustment.Taking the Yalongjiang River Basin as an example,the hydrological gauge network density was analyzed.Based on the CMORPH satellite inverse precipitation product and precipitation monitoring data in the existing hydrological gauge network,the high value range of interval precipitation and the weak area of the gauge distribution were analyzed.The results show that there are 6 areas,namely Qingda River,Huoqu,and Liqiu River,Lenggu(Xin)-Mengdigou main stream left bank area,Litang River Luosang area,Jiulong River need to consider prioritized gauge deployment during the project construction process and raise spatial representativeness of precipitation monitoring.
作者 何朝晖 张波 HE Zhao-hui;ZHANG Bo(Yalong River Hydropower Development Co.,Ltd.,Chengdu 610051,China)
出处 《水电能源科学》 北大核心 2024年第6期15-18,92,共5页 Water Resources and Power
基金 国家自然科学基金项目(51979204)。
关键词 CMORPH 水情站网 雅砻江流域 区间 站网优化 CMORPH hydrological gauge Yalongjiang River Basin region optimization of gauge network
  • 相关文献

参考文献5

二级参考文献39

  • 1张杰,李栋梁,何金梅,王小燕.地形对青藏高原丰枯水年雨季降水量空间分布的影响[J].水科学进展,2007,18(3):319-326. 被引量:26
  • 2Adler R F,Huffman G J,Chang A. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present)[J].Journal of Hydrometeorology,2003,(06):1147-1167.
  • 3Arkin P A,Xie P P. The global precipitation climatology project:First algorithm intercomparison project[J].Bulletin of the American Meteorological Society,1994,(03):401-419.
  • 4Barrett E C,Martin D W. The use of satellite data in rainfall monitoring[M].New York:Academic Press,Inc,1981.
  • 5Ebert E E,Janowiak J E,Kidd C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J].Bulletin of the American Meteorological Society,2007,(01):47-64.
  • 6Gebremichael M,Krajewski W F,Morrissey M. Error uncertainty analysis of GPCP monthly rainfall products:A data-based simulation study[J].Journal of Applied Meteorology,2003,(12):1837-1848.
  • 7Hong Y,Hsh K L,Sorooshian S. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system[J].Journal of Applied Meteorology,2004,(12):1834-1852.
  • 8Huffman G J,Adler R F,Arkin P. The global precipitation climatology project (GPCP) combined precipitation dataset[J].Bulletin of the American Meteorological Society,1997,(01):5-20.
  • 9Huffman G J,Adler R F,Morrissey M. Global precipitation at one-degree daily resolution from multisatellite observations[J].Journal of Hydrometeorology,2001,(01):36-50.
  • 10Huffman G J,Adler R F,Stoker E F. Analyses of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time[A].Seattle,Washington,2004.11-15.

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部