摘要
Nowadays,lithium-ion batteries(LIBs)play a crucial role in modern society in the aspect of portable electronic devices and large-scale smart grids.However,the current performance of lithium-ion batteries has been unable to meet the growing expectations of society and scientific community.Herein,we have synthetically investigated availability of 2D Ni-TABQ monolayer as anode based on DFT for LIBs applications.Our findings have demonstrated that 2D Ni-TABQ monolayer is a semiconductor with a small band gap of 0.2 eV,which suggest that the electronic property of 2D Ni-TABQ monolayer would take place an evident shift from semiconductor property to metallic property after Li adsorption.Furthermore,we checked the stability of 2D Ni-TABQ monolayer and investigated the viability of exfoliation from bulk multilayer Ni-TABQ to form 2D Ni-TABQ monolayer in the light of exfoliation energy and binding energy.We continuously studied electrochemical properties of 2D Ni-TABQ monolayer with respect of theoretical specific capacity,Li-ion diffusion barriers and open-circuit voltage.During the charging process,2D Ni-TABQ monolayer can achieve a high specific capacity of 722 m Ah/g with an open-circuit voltage range from 1.12 V to 0.22 V.These aforementioned results make the 2D Ni-TABQ monolayer a promising anode for LIBs.
基金
financially supported by the National Natural Science Foundation of China(No.52173246)
Natural Science Foundation of Jilin Province(No.20220508141RC)
DoubleThousand Talents Plan of Jiangxi Province(No.jxsq2023102005)
111 Project(No.B13013)
Education Department of Jilin Province(No.JJKH20221154KJ)
Shccig-Qinling Program。