期刊文献+

基于机器学习的股票收益预测与投资组合研究

Machine Learning Based Stock Return Prediction and Portfolio Research
原文传递
导出
摘要 计算机和互联网的高速发展使得量化投资在全球逐渐兴起。笔者将机器学习模型和多因子模型相结合构建量化选股模型,并使用上证50指数成分股2016年到2022年的日频数据进行模型训练和样本外预测,结果发现:1)以随机森林、支持向量机、XGBoost三个模型进行选股构建的投资策略能够战胜市场;2)投资收益受市场行情影响巨大,在下跌行情中,主动型投资策略即使能够战胜市场,也不能保证获得超过无风险收益率的收益。 The rapid development of computers and the Internet has led to the gradual rise of quantitative investment worldwide.This author combines machine learning models and multi-factor models to construct a quantitative stock selection model,and uses the daily frequency data of the constituents of the SSE 50 index from 2016 to 2022 for model training and out-of-sample prediction,and finds that 1)The investment strategy constructed by stock selection with the three models of Random Forests,Support Vector Machines,and XGBoost is able to the market;2)The investment return is affected by the market sentiment greatly,and it is difficult to get more than the risk-free rate of return in the falling market.
作者 陈欣 Xin Chen(School of Economics,Guizhou University,Guiyang Guizhou)
出处 《运筹与模糊学》 2024年第2期599-609,共11页 Operations Research and Fuzziology
关键词 机器学习模型 量化投资 多因子模型 Machine Learning Models Quantitative Investing Multi-Factor Models
  • 相关文献

参考文献1

二级参考文献13

  • 1李春伟,张骏.基于神经网络的股票中期预测[J].计算机工程与科学,2006,28(5):115-117. 被引量:6
  • 2彭丽芳,孟志青,姜华,田密.基于时间序列的支持向量机在股票预测中的应用[J].计算技术与自动化,2006,25(3):88-91. 被引量:32
  • 3Vapnik V. N. , 1995, The Nature of Statistical Learning Theory [M], New York: Springer.
  • 4Vapnik V. N., 1995, Statistical Learning Theory Wiley [M], New York: Springer.
  • 5Shao J. , 1993, Linear Model Selection via Cross -validation [J].Journal of American Statistical Association.
  • 6Kimoto T. , Asakawa K. , 1990, Stock Market Prediction System with Modular Neural Networks[J]. Proceedings of the International Joint Conference on Neural Networks.
  • 7Yoon Y. , Swalves G. , 1991, Predicting Stock Price Performance :A Neural Netzoork Approach [J].Proceedings of the Twenty- fourth Annual Hawaii International Conference on System Sciences.
  • 8Donaldson R.G., Kamstra M., 1999, Neural Network Forecast Combining with Interaction Effects[J].Journal of the Franklin Institute.
  • 9Ping- Feng Pai, Chih- Sheng Lin, 2005, A Hybrid ARIMA and Support Vector Machines Model in Stock Price Forecasting[J]. The International Journal of Management Science.
  • 10Bruges C. J. C. , 1998, A Turorial on Support Vector Machines for Pattern Recognition [J], Data Mining and Knowledge Discovery.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部