期刊文献+

基于元学习的萌动期网络舆情预测模型

Public Opinion Prediction Model Based on Meta-Learning
原文传递
导出
摘要 现有的时间序列预测模型在网络舆情处于萌动期时,因训练所用数据大多为历史相似事件的网络舆情数据,存在严重的过拟合问题。针对上述问题,本文提出一种基于元学习的萌动期网络舆情预测模型Reptile-BiLSTM,基于SIR模型构建舆情传播网络,根据舆情特点优化OLEI算法并计算舆论的影响力特征,在历史相似事件的舆情数据上对BiLSTM模型进行预训练,使用Reptile算法在少量目标事件的舆情数据上对预训练模型进行微调,提高模型在萌动期网络舆情发展预测任务上的表现。经实验验证,Reptile-BiLSTM在evs、r2指标上较BiLSTM分别上升6%、13%,表明本文提出的模型能够在网络舆情处于萌动期时较准确地预测其发展趋势,能够尽早地为相关工作人员引导舆情发展提供有效的决策支持。 When the online public opinion is in the germination stage,the existing time series prediction model has a serious overfitting problem because most of the training data are the online public opinion data of similar historical events.To solve the above problems,this paper proposes a meta-learning based online public opinion prediction model Reptile-BiLSTM,constructs a public opinion communication network based on the SIR Model,optimizes the OLEI algorithm according to the characteristics of public opinion,calculates the influence characteristics of public opinion,and pre-trains the BiLSTM model on the public opinion data of similar historical events.The Reptile algorithm is used to fine-tune the pre-trained model on the public opinion data of a small number of target events to improve the model’s performance in predicting the development of online public opinion during the budding period.The experimental results show that the evs and r2 indexes of Reptile-BiLSTM are 6%and 13%higher than those of BiLSTM respectively,indicating that the model proposed in this paper can accurately predict the development trend of network public opinion when it is in the sprouting stage,and provide effective decision support for relevant staff to guide the development of public opinion as soon as possible.
作者 刘吉金 曹春萍 Jijin Liu;Chunping Cao(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai)
出处 《建模与仿真》 2024年第3期2189-2202,共14页 Modeling and Simulation
基金 上海市社科规划青年课题“突发公共事件中网络情绪共振的发生机制及治理研究”(2021EXW003)。
关键词 网络舆情 舆情预测 深度学习 元学习 双向长短期记忆网络 Internet Public Opinion Public Opinion Prediction Deep Learning Meta-Learning BiLSTM
  • 相关文献

参考文献8

二级参考文献95

  • 1刘振宇,李钦富,杨硕,邓应强,刘芬,赖新明,白雪珂.一种基于主动学习和多种监督学习的情感分析模型[J].中国电子科学研究院学报,2020,15(2):171-176. 被引量:2
  • 2徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:141
  • 3汤力峰,赵昕丽.网络舆情与高校思想政治工作的应对[J].黑龙江高教研究,2007,25(4):64-65. 被引量:79
  • 4Chen Xu,Gao Hui,Fu Yan.Situation analysis and prediction of Web public sentiment[J].2008 International Symposium on Information Science and Engineering,2008(2):707-710.
  • 5Gao Hui,Chen Xu,Fu Yan.Identifying WEB Public Sentiment of Opinions[G].2009 International Symposium on Web Information Systems and Applications,2008:270-272.
  • 6Wei Wei,Hui Gao,Li She.Opinion Mining for Web Public Sentiment Based on Dynamic Knowledge Base[G].International Symposium on Emergency Management,2009:199-203.
  • 7Rake,Eivind L.Emergency management and decision making on accident scenes:Taxonomy,models and future research[J].International Journal of Emergency Management,2003(4):397-409.
  • 8Wheeler,William A,Bolton,Patricia A,Sanquist,T-ohmas F.Decision making in an emergency.When information is not enough[C].Proceedings of the Human Factors Society,1990:1137-1141.
  • 9桑华.高校舆情研究探析[J].兵团教育学院学报,2007,17(4):26-28. 被引量:22
  • 10赵妍妍,秦兵,车万翔,刘挺.中文事件抽取技术研究[J].中文信息学报,2008,22(1):3-8. 被引量:106

共引文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部