期刊文献+

仿真环境下不规则物体的高斯过程隐式曲面核函数优化

Optimization of Gaussian Process Implicit Surface Kernel Function for Irregular Objects in Simulation Environment
原文传递
导出
摘要 对于一个物体进行探索时,首要目标就是获取物体的形状,而当针对形状复杂的物体如不规则方块时,隐式曲面往往是最优选择。本文针对MuJoCo仿真平台下的建立的不规则物体,采用RBF(Radial Basis Function)高斯核函数和TPS(Thin Plate Spline covariance)薄板协方差核函数分别建立高斯过程,完成对物体的隐式曲面建模,通过对比,相比于最初的TPS核函数,改用调参后的RBF误差减小了93.07%。通过仿真实验结果表明,对于仿真平台中的不规则物体,高斯过程隐式曲面能够有效通过少量的采集数据完成曲面建模。 When exploring an object,the primary objective is to acquire its shape.Implicit surfaces often emerge as the optimal choice,particularly when dealing with complex shapes such as irregular blocks.This paper focuses on the implicit surface modeling of irregular objects established within the MuJoCo simulation platform.We employ Radial Basis Function(RBF)Gaussian kernel and Thin Plate Spline Covariance(TPS)kernel to construct Gaussian processes for object modeling.Through comparison,utilizing the optimized RBF kernel results in a 93.07%reduction in error compared to the initial TPS kernel.Simulation experiment results demonstrate the effectiveness of Gaussian process implicit surfaces in modeling irregular objects within the simulation platform using minimal data collection.
作者 顾浩宇 张国庆 李清都 Haoyu Gu;Guoqing Zhang;Qingdu Li(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai;Institute of Machine Intelligence,University of Shanghai for Science and Technology,Shanghai)
出处 《建模与仿真》 2024年第3期3643-3652,共10页 Modeling and Simulation
关键词 高斯过程 隐式曲面 核函数优化 参数调优 MuJuCo仿真 Gassian Process Implicit Surface Kernel Function Optimization Hyperparameter Tuning MuJoCo Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部