期刊文献+

数字孪生机翼损伤模式快速识别与监测方法 被引量:2

Rapid identification and monitoring of digital twin wings damage patterns
原文传递
导出
摘要 针对飞行器结构健康监测过程中存在的识别流程复杂、实时性较差问题,提出一种基于数字孪生技术的飞行器机翼损伤模式识别与监测方法。采用模块化技术构建飞行器机翼的数字孪生结构模型,基于概率神经网络建立了传感器数据在结构数字孪生模型中的映射方法,形成了通用的数字孪生飞行器结构损伤模式快速识别流程。以某无人机为例,基于此流程方法建立了其机翼的损伤模式快速识别模型并开展了对损伤的识别。结果表明:构建的飞行器结构数字孪生识别模型对损伤模式的识别准确率达到了96%以上,能够实现动态航迹规划任务。 To address the problems of complex recognition and poor real-time performance in the process of structural health monitoring of aircraft,a digital twin technology-based damage pattern recognition and prediction method for aircraft wings was proposed.The digital twin structural model of the aircraft wing was constructed using modular technology,and the mapping method of sensor data in the structural digital twin model was established based on probabilistic neural network,forming a fast monitoring process of general digital twin aircraft structural damage pattern.Based on an unmanned aerial vehicle,a rapid damage pattern recognition model of its wings was developed.The results showed that the damage pattern identification accuracy of the digital twin recognition model for aircraft structures reached over 96%,which could complete the dynamic trajectory planning task.
作者 王子一 粟华 龚春林 蔡艳芳 丁轩鹤 杨予成 WANG Ziyi;SU Hua;GONG Chunlin;CAI Yanfang;DING Xuanhe;YANG Yucheng(School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China;The Institute of Spaceplanes and Hypersonic Technology,Northwestern Polytechnical University,Xi’an 710072,China;Xi’an Institute of Control Technology,Xi’an 710065,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2024年第6期107-115,共9页 Journal of Aerospace Power
基金 基础科研计划(JCKY2020204B016)。
关键词 结构健康监测 数字孪生 损伤模式 模式识别 概率神经网络 structural health monitoring digital twin damage classifications pattern recognition probabilistic neural network
  • 相关文献

参考文献10

二级参考文献174

共引文献190

同被引文献53

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部