期刊文献+

基于积分方程逐次逼近理论的迭代混合试验收敛性研究

Research on Convergence Properties of Iterative Hybrid Testing Based on Successive Approximation Theory of Integral Equations
原文传递
导出
摘要 以迭代混合试验的收敛性研究为例,采用第二类Volterra积分方程逐次逼近有关理论,对线性结构迭代混合试验迭代结果的收敛性与唯一性进行研究,并采用数值仿真验证了研究的正确性。结果表明:线性结构迭代混合试验是无条件收敛的;积分方程与迭代混合试验具有内在联系。该研究表明积分方程理论可为迭代混合试验的研究发展提供新的思路。 Taking the convergence study of iterative hybrid testing as an example,this study utilized the second type of Volterra integral equations to iteratively approximate relevant theories,investigated the convergence and uniqueness of it-erative results for linear structural iterative hybrid testing,and validated the correctness of the research through numerical simulations.The results show that iterative hybrid testing for linear structures can unconditionally converge and there is an inherent connection between integral equations and iterative hybrid testing.This research indicates that the theory of in-tegral equations can provide new insights for the research and development of iterative hybrid testing.
作者 王贞 叶慧聪 吴斌 徐小洋 WANG Zhen;YE Hui-cong;WU Bin;XU Xiao-yang(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China;Sanya Science and Education Innovation Park,Wuhan University of Technology,Sanya 5720o0,China;China Construction Second Engineering Bureau Co Ltd Central China Branch,Wuhan 430000,China)
出处 《武汉理工大学学报》 CAS 2024年第4期24-30,88,共8页 Journal of Wuhan University of Technology
基金 国家自然科学基金(52078398、52008320、52278211) 海南省重大科技计划(ZDKJ2021024)。
关键词 迭代混合试验 积分方程 第二类Volterra积分方程 收敛性 理论分析 iterative hybrid testing integral equations second-type Volterra integral equations convergence theoretical analysis
  • 相关文献

参考文献7

二级参考文献120

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部