期刊文献+

基于语义分割的近距离全向车距检测方法研究

Research on Close-range Omnidirectional Vehicle Distance Detection Method Based on Semantic Segmentation
原文传递
导出
摘要 为获取主车与周围近距离车辆之间的距离,确保驾驶安全以及预防剐蹭事故,提出了一种基于视觉的近距离全向车距检测方法。首先,在车身四周安装四路鱼眼镜头,使用语义分割模型对采集到的图像中的车辆进行语义分割;然后将车辆分割后的四路图像拼接为360°环视图像;根据环视图像中像素与实际地面距离的比例关系,通过计算图像中周围车辆外缘到主车外缘的最近距离,实现近距离全向车距的检测。实验结果表明:该方法检测的车距平均误差为12.6%,且误差在15%以内的占比超过90%。 In order to obtain the distance between the main vehicle and the surrounding close-range vehicles to ensure driving safety as well as to prevent cut-and-run accidents,a vision-based close-range omni-directional vehicle distance de-tection method is proposed.Firstly,a four-way fisheye lens is installed around the vehicle body,and a semantic segmenta-tion model is used to semantically segment the vehicles in the captured image;then the four-way image after vehicle seg-mentation is stitched into a 360-degree ring-view image;according to the proportionality between the pixels in the ring-view image and the distance from the actual ground,the detection of the proximity omni-directional distance is realized by calculating the closest distance from the outer edges of the surrounding vehicles to the outer edge of the main vehicle in the image.The experimental results show that the average error of the close-range distance detection proposed in this paper is 12.6%,and the percentage of error within 15%is more than 90%.
作者 邹斌 董曦曦 ZOU Bin;DONG Xi-xi(Hubei Key Laboratory of Advanced Technology for Automotive Components(Wuhan University of Technology),Wuhan 430070,China;Hubei Collaborative Innovation Center for Auto Parts Technology,Wuhan 430070,China)
出处 《武汉理工大学学报》 CAS 2024年第4期125-132,共8页 Journal of Wuhan University of Technology
基金 湖北省重点研发项目(2020BAB135).
关键词 车距检测 语义分割 鱼眼镜头 环视图像 vehicledistance detection semanticsegmentation fisheye lens surroundviewimage
  • 相关文献

参考文献2

二级参考文献25

  • 1刘燕,刘浩学.基于计算机视觉的单目摄影纵向车距测量系统研究[J].公路交通科技,2004,21(9):103-106. 被引量:14
  • 2谢兴盛 ,方勇文 ,吴云峰 ,叶玉堂 ,陈昌彬 ,李长成 ,王兵学 .汽车自适应驰控装置中的红外激光测距[J].激光技术,2004,28(5):521-523. 被引量:8
  • 3王荣本,李斌,储江伟,纪寿文.公路上基于车载单目机器视觉的前方车距测量方法的研究[J].公路交通科技,2001,18(6):94-98. 被引量:39
  • 4郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 5Kasuga T,Yakubo S.Design of a dependable model vehicle forrear-end collision avoidance and its evaluation[C]∥Instrumenta-tion and Measurement Technology Conference(IMTC),Austin,TX,USA,2010:641-646.
  • 6Tsuchiya J,Hayashi M,Kohno R.Platoon characteristics of auto-matic vehicle speed control for vehicles equipped with DS-UWBradar[C]∥IEEE 11th International Symposium on Spread Spec-trum Techniques and Applications(ISITA),Taichung,2010:125-130.
  • 7Parviainen J,Vázquez López A M,Pekkalin O,et al.Using Dopplerradar and MEMS gyro to augment DGPS for land vehicle naviga-tion[C]∥The 18th IEEE International Conference on Control Ap-plications,Saint Petersburg,Russia,2009:1690-1695.
  • 8Chen Y D,Meng Z Q,Liu J L,et al.High-precision infrared pulselaser ranging for active vehicle anti-collision application[C]∥2011 International Conference on Electric Information and ControlEngineering(ICEICE),Wuhan,China,2011:1404-1407.
  • 9Huh K,Park J,Hwang J,et al.A stereo vision-based obstacle de-tection system in vehicles[J].Optics and Lasers in Engineering,2008,46(2):168-178.
  • 10Toulminet G,Bertozzi M,Mousset S,et al..Vehicle detection bymeans of stereo vision-based obstacles features extraction and mo-nocular pattern analysis[J].IEEE Transactions on Image Proce-ssing,2006,15(8):2364-2375.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部