摘要
目的:新生儿败血症是一种新生儿期发病率和死亡率较高的严重感染性疾病。本研究的目的是建立新生儿败血症28 d死亡率的预测模型。方法:回顾性分析2019年4月—2023年4月赣州市妇幼保健院收治的215例新生儿败血症患儿临床资料及入院时实验室检查指标;将败血症患儿分为生存组与非生存组,比较两组基线资料;利用向后逐步回归分析确立最优新生儿败血症死亡率的预测模型,并利用交叉验证技术对模型进行内部验证。结果:生存组和非生存组血小板(PLT)、凝血酶原时间(PT)、国际标准化比值(INR)、白蛋白(ALB)、谷草转氨酶(AST)、血清尿素(UREA)差异均有统计学意义(P<0.05)。多因素logistic分析确定自变量PT、ALB、UREA、血红蛋白(HGB)并纳入最终模型。该模型的曲线下面积(AUC)为0.811,Hosmer-Lemeshow检验P=0.789,经内部验证后曲线下面积(AUC)为0.759。结论:本研究建立了一个易于获得生化参数的精细模型来预测新生儿败血症28 d死亡率,并具有较好的预测能力。
Objective:Neonatal sepsis is a serious infectious disease with high morbidity and mortality in the neonatal period.The aim of this study was to develop a predictive model for 28-day mortality in neonates with sepsis.Method:A retrospective analysis was performed on the clinical data and laboratory examination results on admission of 215 neonates with sepsis who were admitted to Ganzhou Maternal and Child Health Hospital from April 2019 to April 2023.The children with sepsis were divided into survival group and non-survival group,and the baseline data of the two groups were compared.Backward stepwise regression analysis was used to establish the optimal prediction model for neonatal sepsis mortality,and cross-validation techniques were used to internally validate the model.Result:There were significant differences in platelet(PLT),prothrombin time(PT),international normalized ratio(INR),albumin(ALB),aspartate aminotransferase(AST)and serum UREA between the survival group and the non-survival group(P<0.05).Multivariate logistic analysis was used to determine the independent variables PT,ALB,UREA and HGB,which were included in the final model.The area under the curve(AUC)of the model was 0.811,Hosmer-Lemeshow test P=0.789,and after internal verification,the AUC was 0.759.Conclusion:In this study,a refined model with readily available biochemical parameters is developed to predict 28-day mortality of neonatal sepsis with good predictive power.
作者
涂相文
唐满妹
罗孝华
TU Xiangwen;TANG Manmei;LUO Xiaohua(Experimental Department of Eugenic Genetics,Ganzhou Maternal and Child Health Hospital,Ganzhou 341000,China;不详)
出处
《中国医学创新》
CAS
2024年第16期10-15,共6页
Medical Innovation of China
关键词
败血症
新生儿
死亡率
预测模型
Sepsis
Neonatal
Mortality
Predictive modeling