摘要
目的 掌握北京市东城区2009—2019年蝇种类、密度、分布及其季节消长规律,探讨基于生态学监测的蝇类密度预测方法,为东城区蝇类预测与科学防控提供依据。方法 收集整理东城区2009—2019年蝇类生态学监测数据并进行分析;利用MATLAB R2018b软件构建的季节性差分自回归移动平均模型(SARIMA)对2019年4—10月的蝇类密度进行预测并与实际监测值进行比较,验证模型预测效果。结果 2009—2019年东城区各生态学监测点蝇类年平均密度为7.09只/笼,优势蝇种为麻蝇科,占捕获蝇总数的56.82%,占比超过5%以上的蝇种类依次为厩腐蝇(11.74%)、家蝇(10.17%)、丝光绿蝇(8.99%)和大头金蝇(6.93%);不同生境中,宾馆饭店蝇类密度最高,为11.86只/笼,餐饮外环境最低,为2.20只/笼,麻蝇科在不同生境中均为优势种群;蝇类密度高峰主要出现在7月和8月。基于历史生态学监测数据构建的最优模型SARIMA(0,1,4)(2,1,3)12预测2019年4—10月的蝇类密度与实际密度基本一致,实际监测值均落在预测值95%置信区间内,模型评价指标均方根误差(RMSE)和平均绝对误差(MAE)分别为1.379和1.014,预测效果较好。结论 2009—2019年北京市东城区以麻蝇科为优势种群,宾馆饭店是蝇类防控的重点场所,活动高峰主要出现在7—8月;通过对SARIMA模型效果评价,该方法可用于蝇类密度短期变化趋势预测。
Objective To investigate the fly species,density,distribution and seasonal fluctuation in Dongcheng District,Beijing,from 2009—2019,and to explore the method of fly density prediction based on ecological surveillance,so as to provide a basis for the prediction and scientific prevention and control of flies in Dongcheng District.Methods The ecological surveillance data of fly species in Dongcheng District from 2009 to 2019 were collected and analyzed;the seasonal autoregressive integrated moving average model(SARIMA)constructed with MATLAB R2018b software was used to predict the fly density in April-October 2019 and compared with the actual surveillance values to verify the model prediction effect,to verify the model prediction effect.Results The annual mean density of flies at each ecological surveillance site in Dongcheng District from 2009 to 2019 was 7.09 flies/cage,and the dominant fly species was the Sarcophagidae,accounting for 56.82%of the total number of captured flies,and the fly species that accounted for more than 5%of the total number of captured flies,in the order of their percentage,were Muscina stabulans(11.74%),Musca domestica(10.17%),Lucilia sericata(8.99%),and Chrysomya megacephala(6.93%);among different habitats,the highest fly density was 11.86 flies/cage in hotels,and the lowest was 2.20 flies/cage in catering outside environments,and Sarcophagidae was the dominant species in different habitats;the peak of fly density mainly occurred in July and August.The optimal model SARIMA(0,1,4)(2,1,3)12 constructed based on historical ecological surveillance data predicted that the fly densities in April-October 2019 were basically consistent with the actual densities,and the actual surveillance values all fell within the 95%confidence intervals of the predicted values,and the model evaluation indexes root mean square error(RMSE)and mean absolute error(MAE)were 1.379 and 1.014,respectively,and the prediction effect was good.Conclusion From 2009 to 2019,the dominant species in Dongcheng District of Beijing was Sarcophagidae,and hotels were the key places for fly control,with the peak of activity occurring mainly in July-August;by evaluating the effect of the SARIMA model,the method can be used for predicting short-term changes in the trend of fly density.
作者
魏绪强
李秋红
马卓
阙燃
王云波
周小洁
WEI Xuqiang;LI Qiuhong;MA Zhuo;QUE Ran;WANG Yunbo;ZHOU Xiaojie(Dongcheng District Center for Disease Control and Prevention,Beijing 100009,China;Beijing Municipal Center forDisease Prevention and Control,Beijing Research Center for Preventive Medicine,Beijing 100013,China)
出处
《中华卫生杀虫药械》
CAS
2024年第3期262-267,共6页
Chinese Journal of Hygienic Insecticides and Equipments
关键词
蝇密度
季节性差分自回归移动平均模型
预测
密度监测
fly density
seasonal autoregressive integratedmoving average model(SARIMA)
prediction
density monitoring