期刊文献+

固液界面热阻的温度依赖特性模拟研究

Numerical Study of the Effects of System Temperature on Heat Transfer at the Solid-Liquid Interface
下载PDF
导出
摘要 基于非平衡态分子动力学模拟方法,研究了系统温度及固液结合强度对固液界面传热的影响规律。模拟结果表明,固液界面热阻随着系统温度的升高而降低,并且亲水性界面的界面热阻温度依赖性较弱。基于微观热流密度计算式的分析表明,随着系统温度升高,动能项和维里项的贡献均逐渐增大,因而固液界面传热增强,但是动能项占比逐渐增大,维里项占比逐渐降低;随着固液结合强度逐渐增大,界面吸附效应增强,维里项贡献明显增大,这是较强的固液相互作用能够强化界面传热的主要原因。 In the present paper,the effect of system temperature and solid-liquid bond strength on the thermal transport has been investigated based on the non-equilibrium molecular dynamics simulations.It is revealed that the interfacial thermal resistance decreases with increasing temperature,and the interfacial thermal resistance of the hydrophilic interface has a weak temperature dependence.The interfacial thermal transport mechanism is analyzed based on the microscale calculation formula of the heat flux.With increasing temperature,both the contributions by the kinetic and virial term can be enhanced.The proportion of the kinetic term increases,while the proportion of the virial term decreases with increasing temperature.For strong interfacial couplings,the virial term can be enhanced,which is the dominate mechanism for the enhanced interfacial heat transfer.
作者 王军 李海洋 夏国栋 WANG Jun;LI Haiyang;XIA Guodong(MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation,Beijing Key Laboratory of Heat Transfer and Energy Conversion,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2024年第7期864-871,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(519760002) 北京市科技新星计划资助项目(Z191100001119033)。
关键词 界面热阻 分子动力学模拟 固液界面 温度依赖性 润湿性 微观热流密度 interfacial thermal resistance molecular dynamics simulation solid-liquid interface temperature dependence wettability microscale heat flux
  • 相关文献

参考文献7

二级参考文献37

  • 1QIAN ZhongDong1, HU XiaoQing1, HUAI WenXin1 & XUE WanYun1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.Numerical simulation of sediment erosion by submerged jets using an Eulerian model[J].Science China(Technological Sciences),2010,53(12):3324-3330. 被引量:5
  • 2Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J.
  • 3Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605.
  • 4Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605.
  • 5Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337.
  • 6Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101.
  • 7Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese).
  • 8Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese).
  • 9Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese).
  • 10Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部