摘要
随着社会经济的快速发展,供热系统在现代城市生活中扮演着至关重要的角色。本文提出了一种基于神经网络的大南湖电厂智能供热系统调度优化方法。首先,对大南湖电厂智能供热系统进行梳理和分析。随后,针对现有大南湖电厂供热系统存在的问题,提出了一套基于数据分析的智能调度优化算法。最后,设计大南湖电厂智慧化供热系统平台,并进行了系统现场实际运行测试。结果表明,该方法能够显著提高供热系统的能源利用效率。
With the rapid development of social economy,the heating system plays a vital role in modern city life.In this paper,a neural network-based scheduling optimization method for the intelligent heating system of the Great South Lake Power Plant is proposed.Firstly,the intelligent heating system of Dananhu Power Plant is sorted out and analyzed.Subsequently,a set of intelligent scheduling optimization algorithms based on data analysis is proposed for the existing problems of the heating system of the Great South Lake Power Plant.Finally,the intelligent heat supply system platform of Dananhu Power Plant is designed,and the actual operation test of the system on site is carried out.Results show that the method can significantly improve the energy utilization efficiency of the heating system.
作者
冷江潼
LENG Jiang-tong(Guoneng Hami Coal Power Co.,Ltd.Dananhu Power Plant,Hami 839000,China)
出处
《价值工程》
2024年第19期53-55,共3页
Value Engineering
关键词
智能供热系统
智能调度
优化研究
intelligent heating system
intelligent scheduling
optimization study