期刊文献+

具备无功输出能力的光伏逆变器IGBT可靠性分析

RELIABILITY ANALYSIS OF IGBT FOR PV INVERTER WITHREACTIVE POWER OUTPUT CAPABILITY
下载PDF
导出
摘要 提出一种基于数据驱动的绝缘栅双极型晶体管(IGBT)可靠性评估方法,根据光伏电源有功功率、无功功率、太阳辐照度、环境温度定量分析光伏逆变器IGBT可靠性。该方法利用LightGBM机器学习模型刻画IGBT工况和IGBT结温之间的非线性映射关系,有效解决了IGBT可靠性评估中IGBT结温计算耗时长、依赖模型参数的问题。最后,基于IEEE 33节点配电系统对参与配电网无功调控的光伏逆变器IGBT可靠性进行量化评估分析。 In this paper,a data-driven IGBT reliability evaluation method is proposed to quantitatively evaluate IGBT reliability in PV inverters according to active power,reactive power,solar irradiance and ambient temperature.At the same time,LightGBM machine learning model is used to replace the traditional thermoelectric coupling model,which effectively improves the calculation efficiency of IGBT junction temperature and reduces the dependence of IGBT reliability evaluation results on IGBT model parameters.Finally,based on IEEE 33 node distribution system,the reliability of IGBT PV inverters participating in reactive power regulation of distribution network was evaluated quantitatively.
作者 张波 高远 李铁成 胡雪凯 王磊 Zhang Bo;Gao Yuan;Li Tiecheng;Hu Xuekai;Wang Lei(Key Laboratory of Distributed Energy Storage and Micro-grid of Hebei Province North China Electric Power University,Baoding 071003,China;School of Electrical Engineering,Southeast University,Nanjing 210096,China;Hebei Electric Power Research Institute,Shijiazhuang 050021,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期296-302,共7页 Acta Energiae Solaris Sinica
基金 河北省自然科学基金(E2022502059) 国网河北省电力有限公司电力科学研究院科技项目(kj2022-021)。
关键词 太阳能 配电网 光伏逆变器 可靠性分析 LightGBM模型 结温 solar energy distribution network photovoltaic inverter reliability analysis LightGBM model junction temperature
  • 相关文献

参考文献9

二级参考文献105

  • 1汪海宁,苏建徽,张国荣,丁明.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报,2006,27(6):540-544. 被引量:27
  • 2昌金铭.国内外光伏发电的新进展[J].中国建设动态(阳光能源),2007(1):28-31. 被引量:24
  • 3Tavner P J, Xiang J, Spinato F. Reliability analysis for wind turbines[J]. Wind Energy, 2007, 10(1): 1-18.
  • 4Ribrant J, Bertling L M. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[J]. IEEE Trans on Energy Conversion, 2007, 22(1): 167-173.
  • 5Yang S, Bryant A, Mawby P, et al. An industry-based survey of reliability in power electronic converters [J]. IEEE Trans. on Industry Applications, 2011, 47(3): 1141-1151.
  • 6Babak A, Amir H R, Gevorg B G, et al. Reliability considerations for parallel performance of semiconductor switches in high-power switching power supplies[J]. IEEE Trans. on Industry Electronics, 2009, 56(6): 2133-2139.
  • 7Anuj G, Robert J G. Electronic system reliability collating prediction models[J]. IEEE Trans. on Device and Materials Reliability, 2006, 6(2): 258-265.
  • 8Arifujjaman M, Iqbal M T, Quaicoe J E. Reliability analysis of grid connected small wind turbine power electronics[J]. Applied Energy, 2009, 86(9): 1617-1623.
  • 9Xie Kaigui, Jiang Zefu, Li Wenyuan. Effect of wind speed on wind turbine power converter reliability[J]. IEEE Trans on EnergyConversion, 2012, 27(1): 96-104.
  • 10Zoran M, Vlado S. Lifetime modeling and prediction of power devices[C]//Proceedings Of the 5th International Conference on Integrated Power Systems (CIPS). Nuremberg: IEEE, 2008: 1-9.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部