期刊文献+

Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

下载PDF
导出
摘要 The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第6期4659-4681,共23页 计算机、材料和连续体(英文)
基金 funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
  • 相关文献

参考文献1

二级参考文献8

  • 1CALINSKI R,HARABASZ J.A dendrite method for cluster analysis[J].Communications in Statistics,1974,3(1):1 -27.
  • 2DAVIES D L,BOULDIN D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
  • 3DUDOIT S,FRIDLYAND J.A prediction-based resampling method for estimating the number of clusters in a dataset[J].Genome Biology,2002,3(7):1-21.
  • 4DIMITRIADOU E,DOLNICAR S,WEINGESSEL A.An examination of indexes for determining the number of cluster in binary data sets[J].Psychometrika,2002,67(1):137-160.
  • 5KAPP A V,TIBSHIRANI R.Are clusters found in one dataset present in another dataset?[J].Biostatistics,2007,8(1):9-31.
  • 6ROUSSEEUW P J.Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J].Journal of Computational and Applied Mathematics,1987,20(1):53 -65.
  • 7DEMB(E)L(E) D,KASTNER P.Fuzzy C-means method for clustering microarray data[J].Bioinformatics,2003,19(8):973-980.
  • 8孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部