期刊文献+

基于深度学习的帕金森症步态障碍分析与研究

Analysis and Research on Gait Disorder in Parkinson's Disease Based on Deep Learning
下载PDF
导出
摘要 步行作为人类的基本活动之一,对其进行分析在临床研究中有重要意义。通过对公开帕金森症足底压力数据集Gait in Parkinson’s Disease进行分析,设计划分步态周期的方法,并提取步态特征参数。应用一种混合神经网络(GRU-DNN),将门控循环单元(GRU)与深度神经网络(DNN)相结合对帕金森症病情诊断进行分类。数据分析为临床诊断提供更多客观依据,从而辅助医生进行病情诊断。为验证方法的有效性,使用该网络对数据集中具有病情标签的步态信息进行分类预测,结果显示:在帕金森症诊断实验中,该网络的识别准确率为98.7%;在帕金森症严重程度诊断实验中,该网络对于严重程度为2级的识别准确率达到100%;对于其余严重程度的识别准确率达到98%。 As one of the basic activities of human beings,the analysis of walking is of great significance in clinical research.In this paper,we analyzed the published plantar pressure dataset Gait in Parkinson's Disease,designed a method to divide the gait period,and extracted the characteristic parameters of gait.A hybrid neural network(GRU-DNN)was applied to classify Parkinson's disease by combining the gated circulation unit(GRU)and the deep neural network(DNN).Data analysis provided more objective basis for clinical diagnosis,thereby assisting doctors in diagnosing the disease.To verify the effectiveness of the method,the network was used to classify and predict gait information with disease labels in the dataset.In Parkinson's disease diagnosis experiment,the recognition accuracy of this network was 98.7%.In the Parkinson's severity diagnosis experiment,the network achieved 100%recognition accuracy for severity level 2,and 98%for the rest of the severity level.
作者 蔡万鹏 刘昊 王晨 CAI Wanpeng;LIU Hao;WANG Chen(School of Arts and Sciences,Beijing Institute of Fashion Technology,Beijing 100029,China;Academic Affairs Office,Beijing Institute of Fashion Technology,Beijing 100029,China)
出处 《北京服装学院学报(自然科学版)》 CAS 2024年第2期97-103,共7页 Journal of Beijing Institute of Fashion Technology:Natural Science Edition
基金 北京服装学院青年拔尖人才培养计划项目(NHFZ20210150)。
关键词 深度学习 步态分析 神经网络 帕金森症 deep learning gait analysis neural network Parkinson's disease
  • 相关文献

参考文献4

二级参考文献31

  • 1闫松华,谢楠,刘志成.肥胖儿童平地自然行走时的步态研究[J].中国运动医学杂志,2007,26(3):286-290. 被引量:21
  • 2孙鲁,王明喜,王增涛,王帅帅.足底压力步态分析在跟骨骨折术后疗效评价中的作用[J].山东医药,2007,47(20):70-71. 被引量:4
  • 3侯向锋,刘蓉,周兆丰.加速度传感器MMA7260在步态特征提取中的应用[J].传感技术学报,2007,20(3):507-511. 被引量:42
  • 4Frazzitta G, Maestri R, Uccellini D, et al. Re- habilitation treatment of gait in patients with Parldnson's disease with freezing: a comparison between two physical therapy protocols using vi- sual and auditory cues with or without treadmill training[J]. Mov Disord, 2009, 24:1139-1143.
  • 5Gibb WR, Lees AJ. The relevance of theLewy body to the pathogenesis of idiopathic Parkinson's disease [J]. J Neurol Neurosurg Psy- chiatry, 1988,51: 745,752.
  • 6Miyai I, Fujimotq Y, Yamamoto H, et al. Long-term effect of body weight-supported tread- mill training in Parkin0n's disease: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2002, 83: 1370-1373. :.
  • 7McNeely ME, Duncan RP, Earhart GM. Medication improves balance and complex gait performance in Parkinson disease [J]. Gait Pos- ture, 2012, 36: 144-148.
  • 8Goetz CG, Tilley BC, Sbaftman SR, et al. Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-spon- sored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results [J]. Mov Disord, 2008, 23: 2129-2170.
  • 9Damiano DL, Dejong SL. A systematic re- view of the effectiveness of treadmill training and body weight support in pediatric rehabilitation[J]. J Neurol Phys Ther, 2009, 33: 27-44.
  • 10汤澄清,史力民,黄愿.Footscan步态分析系统在足迹检验中的应用初探[J].刑事技术,2008,33(4):18-20. 被引量:13

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部