期刊文献+

基于部件模型约束的制冷系统变工况性能分析

Variable operating condition performance analysis of refrigeration systems based on component model constraints
原文传递
导出
摘要 为了探究制冷系统在不同工况的性能,建立了基于部件模型的制冷系统仿真模型。当蒸发温度-6℃到10℃,冷凝温度30℃到50℃之间变化时,通过求解部件模型之间的热力学耦合关系,分析变工况对系统运行状态的影响。此外,研究了变工况对系统部件及整体(火用)损与(火用)效率的影响。结果表明,系统在蒸发温度为0℃以下能稳定运行,冷凝温度从30℃到50℃变化期间,蒸发器出口过热度最大变化达到3.9℃。冷凝温度从35℃调整到45℃时,蒸发器(火用)损失减少14.28%,制冷负荷减小10%,系统总(火用)损失增加4.45%,系统(火用)效率下降最大不超过3%。 A simulation model of refrigeration systems was built by using component models to investigate the performance of refrigeration systems under various operating situations.The thermodynamic coupling relationship between component models was solved to examine the impact of various operating conditions on the system operation status when the evaporation temperature varies from-6℃to 10℃and the condensation temperature varies from 30℃to 50℃.The results show that the system can function reliably at evaporation temperatures below O C,and the highest variation in superheat at the outlet of the evaporator is 3.9℃within the condensation temperature range of 30℃to 50℃.By increasing the condensation temperature from 35℃to 45℃,the evaporator exergy loss drops by 14.28%,the refrigeration load decreases by 10%,the overall exergyloss of the system increases by more than 4.45%,and the highest decline in system exergy efficiency is less than 3%.
作者 胡开永 刘志 付森 李尔康 宁静红 Hu Kaiyong;Liu Zhi;Fu Sen;Li Erkang;Ning Jinghong(Tianjin Key Lab of Refrigeration Technology,Tianjin University of Commerce,Tianjin 300134,China;Shandong Onar Refrigeration Technology Co.,Ltd,Binzhou 256600,China)
出处 《低温与超导》 CAS 北大核心 2024年第5期49-55,62,共8页 Cryogenics and Superconductivity
基金 国家自然科学基金(52376069) 山东省科技型中小企业创新能力提升项目(2022TSGC2596)资助。
关键词 制冷系统 部件约束 (火用)分析 Refrigeration system Component constraints Exergy analysis
  • 相关文献

参考文献8

二级参考文献56

  • 1中国国家标准化管理委员会.GB/T7725-2004房间空气调节器[S].北京:中国标准出版社,2004.
  • 2Aynur T N,Hwang Y,Radermacher R. Experimental evaluation of the ventilation effect on the performance of a VRV system in cooling mode-Part Ⅰ,experimental evaluation[J].{H}HVAC&R RESEARCH,2008,(04):615-630.
  • 3Aynur T N,Hwang Y,Radermacher R. Simulation evaluation of the ventilation effect on the performance of a VRV system in cooling mode-Part Ⅱ,simulation evaluation[J].{H}HVAC&R RESEARCH,2008,(05):783-795.
  • 4Liu X B,Hong T Z. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems[J].{H}Energy and Buildings,2010,(05):584-589.
  • 5Shao S Q,Shi W X,Li X T. Simulation on complex refrigeration systems based on two-phase fluid network,Part Ⅰ:model development[J].{H}International Journal of Refrigeration,2008,(03):490-499.
  • 6Shi W X,Shao S Q,Li X T. Simulation model for complex refrigeration systems based on two-phase fluid network,Part Ⅱ:model application[J].{H}International Journal of Refrigeration,2008,(03):500-509.
  • 7Chen W,Zhou X X,Deng S M. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)[J].{H}Energy Conversion & Management,2005,(03):451-465.
  • 8ZhouYP,Wu JY,Wang RZ. Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions[J].{H}Energy and Buildings,2007,(02):212-220.doi:10.1016/j.enbuild.2006.06.005.
  • 9Lin J L,Yeh T J. Identification and control of multi-evaporator air conditioning systems[J].{H}International Journal of Refrigeration,2007,(08):1374-1385.
  • 10Chiou C B,Chiou C H,Chu C M. The application of fuzzy control on energy saving for multi-unit room airconditioners[J].{H}Applied Tnermal Engineering,2009,(02):310-316.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部