期刊文献+

Planar matrices and arrays of Feynman diagrams:poles for higher k

原文传递
导出
摘要 Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes m_(n)(^(k))for k>2.In this follow-up work,we investigate the poles of m_(n)(^(k))from the perspective of such arrays.For general k,we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles,whose number is drastically less than the number of the full arrays.As an example,we first provide all the poles for the cases(k,n)=(3,7),(3,8),(3,9),(3,10),(4,8)and(4,9)in terms of their planar arrays of degenerate Feynman diagrams.We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases.Along the way,we implement hard and soft kinematical limits,which provide a map between the poles in kinematic space and their combinatoric arrays.We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in(k,n)and(n-k,n).We also outline the relation to boundary maps of the hypersimplex Δ_(k,n) and rays in the tropical Grassmannian Tr(k,n).
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第4期1-13,共13页 理论物理通讯(英文版)
基金 supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部