期刊文献+

Learning topological defects formation with neural networks in a quantum phase transition

原文传递
导出
摘要 Neural networks possess formidable representational power,rendering them invaluable in solving complex quantum many-body systems.While they excel at analyzing static solutions,nonequilibrium processes,including critical dynamics during a quantum phase transition,pose a greater challenge for neural networks.To address this,we utilize neural networks and machine learning algorithms to investigate time evolutions,universal statistics,and correlations of topological defects in a one-dimensional transverse-field quantum Ising model.Specifically,our analysis involves computing the energy of the system during a quantum phase transition following a linear quench of the transverse magnetic field strength.The excitation energies satisfy a power-law relation to the quench rate,indicating a proportional relationship between the excitation energy and the kink numbers.Moreover,we establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate,indicating a binomial distribution of the kinks.Finally,the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期68-76,共9页 理论物理通讯(英文版)
基金 partially supported by the National Natural Science Foundation of China(Grants No.11875095 and 12175008).
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部