期刊文献+

Bi-Frobenius Algebra Structures on Quantum Complete Intersections

原文传递
导出
摘要 This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k.We find a class of comultiplications,such that if√−1∈k,then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters qij=±1.Also,it is proved that if√−1∈k then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter q=±√1.While if−1/∈k,then the exterior algebra with two variables admits no bi-Frobenius algebra structures.We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure,if and only if it is commutative,the characteristic of k is a prime p,and every ai a power of p.This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras(and hence not Hopf algebras).In commutative case,other two comultiplications on complete intersection rings are given,such that they admit non-isomorphic bi-Frobenius algebra structures.
作者 Hai JIN Pu ZHANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第6期1481-1504,共24页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.12131015,11971304) Natural Science Foundation of Shanghai(Grant No.23ZR1435100)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部