期刊文献+

网络舆论中隐性词汇的情感意涵研究

Sentimental Connotations of Implicit Words in Public Opinion Online
下载PDF
导出
摘要 网络舆论研究大多关注显性情感,对隐性情感的分析较为缺乏。本研究使用加权词向量方法和双向长短时记忆网络(Bi-LSTM)方法进行情感多分类研究,进一步挖掘网络舆论中隐性词汇的情感意涵。研究首先以词频-逆文档频率(TF-IDF)理论思想为基础计算词向量的情感权重,然后对词向量进行情感加权,并将加权后的词向量输入Bi-LSTM模型进行特征计算,最后使用Softmax函数完成情感的多分类预测。同时通过回溯的方式,对情感权重值较高的代表性词汇(隐性词汇)进行情感意涵分析。结果表明,该方法不仅能够有效提升多类情感判别的准确率,还可以通过这些代表性词汇加深对隐性词汇中情感意涵的认识和把握,这对于我国这一具有自我审查文化传统的社会及其舆论的把握具有重要意义。 On the research of public opinion,most studies focus on the explicit emotion,while little attention has been paid to the sentimental analysis of implicit words.The current study attempts to explore the various sentimental connotations of implicit words through the weighted word vector method and LSTM method.Firstly,the emotion weight of the word vector was calculated based on TF-IDF theory,then the emotion weight was carried out on the word vector.Secondly,the weighted word vector was input into the Bi-LSTM model for feature calculation.Finally,softmax function was used to complete the multi-classification prediction of emotion.Meanwhile,the sentimental meanings are illustrated through dating back to the implicit“representative”words with high emotional weight.The results show that the method proposed in this study can effectively improve the accuracy of multiemotion prediction.More importantly,these“representative”words are beneficial to deepen the understanding and grasp of the emotional meanings of implicit words,which is of great significance to the public opinion in the context of self-censorship in China.
作者 盖赟 晏齐宏 Yun Ge;Qihong Yan(Department of Computer Teaching and Research,University of Chinese Academy of Social Sciences;School of Languages and Communication Studies,Beijing Jiao Tong University)
出处 《全球传媒学刊》 CSSCI 2024年第2期181-199,共19页 Global Journal of Media Studies
基金 教育部人文社会科学研究青年项目“基于大数据技术分析民众对党的十九大精神的舆情认知研究”(编号:18YJCZH030) 中国社会科学院大学研究项目的阶段性成果。
关键词 网络舆论 情感分析 隐性情感 双向长短时记忆网络 Public Opinion Sentimental Analysis Explicit Emotion Bidirectional Long-Term Memory
  • 相关文献

参考文献3

二级参考文献32

  • 1左衍涛,王登峰.汉语情绪词自评维度[J].心理科学进展,1997,7(2):56-60. 被引量:18
  • 2钟杰,钱铭怡.中文情绪形容词检测表的编制与信效度研究[J].中国临床心理学杂志,2005,13(1):9-13. 被引量:46
  • 3Bollen, J., Mao, H. N., & Zeng, X. J. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2, 1-8.
  • 4Das, S., & Chen, M. (2001). Yahoo for amazon: Extracting market sentiment from stock message boards. In Ptceedings of the Asia Pacific Finance Assiation Annual Conference, Bangkok.
  • 5Dodds, P., Harris, K., Kloumann, I., Bliss, C., & Danforth, C. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PloS ONE, 6, 1-26.
  • 6Ekman, P., & Friesen, W. V. (1971).Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124-129.
  • 7Colder, A. S., & Macy, W. M. (2011). Diurnal and seasonal mood vary with work, sleep, and day length across diverse cultures. Science, 333, 1878-1881.
  • 8Lansdall-Welfare, T., Lampos, V., & Cristianini, N. (2012). Effects of the recession on public mood in the UK. Paper presented at tbe meeting of the International World Wide Web Conference, Lyon, France.
  • 9Matsumoto, D. (2005). Development and validation of a measure of display rule knowledge: The display rule assessment inventory. Emotion, 5, 23-40.
  • 10Pepe, A., & Bollen, J. (2008). Between conjecture and memento: Shaping a collective emotional perception of the future. Paper presented at the meeting of the AAAI Spnng Symposiumon Emotion, Personality, and Social Behavior, Chicago.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部