期刊文献+

沈阳市农村公共建筑空气源热泵供热系统运行策略研究

Study on the operation strategy of air source heat pump heating system in Shenyang rural public buildings
下载PDF
导出
摘要 针对沈阳农村地区公共建筑清洁取暖改造需求,开展农村地区公共建筑现状调研,建立建筑物室内温度预测模型,优化农村公共建筑空气源热泵供热系统的运行策略。研究结果表明,空气源热泵供热系统可以满足严寒地区公共建筑的供热需求,采暖季应结合建筑蓄热特性充分利用谷电时间为农村公共建筑供热,PSO-BP仿真模型预测表明供水温度35℃时亦可满足采暖初、末期的供热需求。 According to the demand for clean heating renovation of public buildings in rural areas of Shenyang,the current situation of public buildings in rural areas was investigated.We establish the indoor temperature prediction model of the building.At the same time,we set up the indoor temperature prediction model of the building.The operation strategy of air source heat pump heating system in rural public buildings is optimized.The research results show that the air source heat pump heating system can meet the heating demand of rural public buildings in cold areas.Combined with the characteristics of building thermal storage,we should make full use of valley time to heat rural public buildings.The prediction of PSO-BP simulation model shows that the supply water temperature of 35℃ can also meet the heating demand at the beginning and end of the heating season.
作者 王珺 刘辉 孙成龙 Wang Jun;Liu Hui;Sun Chenglong(Jianke Huanneng Technology Co.,Ltd.,Beijing 100020;Shenyang Jianzhu University,Shenyang 110168)
出处 《建设科技》 2024年第11期23-26,共4页 Construction Science and Technology
基金 沈阳市第一批清洁取暖专项研究课题:沈阳农村地区公共建筑清洁取暖适用性技术研究(JH23-210100-13055),主办单位:沈阳市发展和改革委员会。
关键词 严寒地区 农村公共建筑 清洁取暖 空气源热泵 运行策略 severe cold area rural public buildings clean heating air-source heat pump operation strategy
  • 相关文献

参考文献2

二级参考文献41

  • 1Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 3van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 5Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 6Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998
  • 8Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949
  • 9Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization [A].Proceedings of the Congress on Evolutionary Computation[C].Seoul,Korea,2001
  • 10Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations [A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,USA,July 2001

共引文献365

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部