期刊文献+

Optimization of Product Distribution for MIP Units Using Data Mining

下载PDF
导出
摘要 Based on data from a petrochemical company’s MIP unit over the past three years,19 input variables and 2 output variables were selected for modeling using the maximum information coefficient and Pearson correlation coefficient among 155 variables,which included properties of feedstock oil and spent catalyst,operational variables,and material flows.The distillation range variables were reduced using factor analysis,and the feedstock oils were clustered into three types using the K-means++algorithm.Each feedstock oil type was then used as an input variable for modeling.An XGBoost model and a back propagation(BP)neural network model with a structure of 20-15-15-2 were developed to predict the combined yield of gasoline and propylene,as well as the coke yield.In the test set,the BP neural network model demonstrated better fitting and generalization abilities with a mean absolute percentage error and determination coefficient of 1.48%and 0.738,respectively,compared to the XGBoost model.It was therefore chosen for further optimization work.The genetic algorithm was utilized to optimize operational variables in order to increase the combined yield of gasoline and propylene while controlling the growth of coke yield.Seven commercial test results in the MIP unit showed an average increase of 1.39 percentage points for the combined yield of gasoline and propylene and an average decrease of 0.11 percentage points for coke yield.These results indicate that the model effectively improves the combined yield of gasoline and propylene while controlling the increase in coke yield.
出处 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期146-157,共12页 中国炼油与石油化工(英文版)
基金 the National Natural Science Foundation of China(No.U22B20141) the SINOPEC funded project(No.31900000-21-ZC0607-0009).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部