摘要
运用微分方程定性理论和动力系统分支方法,研究了一类广义K(m,n)方程的行波解。考虑了两种情形:K(1,3,2)方程和K(2,3,3)方程。在不同的参数条件下,得到K(1,3,2)方程的紧孤子和K(2,3,3)方程的紧孤子及周期爆破波解。进一步通过数值模拟,分析其系统的分支相图和行波解的波形图。
This article studied traveling wave solutions to the generalized K(m,n)equations by the qualitative theory of differential equations and the bifurcation method of dynamical systems.Two cases are considered:the K(1,3,2)equation and the K(2,3,3)equation.Under the different parameter conditions,compactons of the K(1,3,2)equation are derived,compactons and periodic blow-up wave solutions of the K(2,3,3)equation are obtained.The bifurcation phase of the plane system and the figure of traveling wave solutions are analyzed by numerical simulations.
作者
赵传业
朱能
张艳芬
阮小军
钟希杰
ZHAO Chuanye;ZHU Neng;ZHANG Yanfen;RUAN Xiaojun;ZHONG Xijie(School of Mathematics and Computer Sciences,Nanchang University,Nanchang 330031,China;Nanchang Jiaotong Institute,Nanchang 330100,China)
出处
《南昌大学学报(理科版)》
CAS
2024年第3期214-220,230,共8页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(11901277,12161055)
江西省自然科学基金资助项目(20192BAB211004)。
关键词
分支方法
K(m
n)方程
紧孤子
周期爆破波解
bifurcation method
K(m,n)equation
compacton
periodic blow-up wave solution