期刊文献+

基于新型细菌觅食优化算法的飞机动态泊位问题

Novel bacterial foraging optimization algorithm for dynamic aircraft parking stand allocation problem
下载PDF
导出
摘要 随着航空运输业的发展,传统手动设计泊位方案已难以满足日益增长的外包维修需求.在外包模式下,如何快速给出高效的动态泊位方案关系到维修任务订单的准点交付,是飞机维修服务公司亟待解决的重要问题.针对飞机泊位进出顺序及碰撞检测特点,构建带时间窗的飞机维修泊位模型.设计自适应趋化学习及交叉协作策略,提出新型细菌觅食优化算法,并设计一系列约束处理机制.研究结果表明,提出的基于矩形碰撞检测方法可有效预防并判断飞机间碰撞阻塞情况.新型细菌觅食优化算法在解决飞机动态泊位问题上展现出搜索精度高、稳定性强等特点.所得高效智能化泊位调度方案有助于在保证维修安全的情况下提升飞机维修服务提供商的维修服务效率,改进维修资源利用率与维修系统的柔性,为企业实现高质量发展打下良好基础. With the rapid development of the aviation industry,traditional manual aircraft parking stand allo-cation method cannot satisfy the increasing maintenance demands.To guarantee the punctual delivery of out-sourcing maintenance task orders,how to provide efficient dynamic aircraft parking stand allocation scheme becomes an urgent problem.This paper proposes a novel bacterial foraging optimization algorithm with self-adaptive learning method and cross-collaboration strategy.Moreover,constraint handling mechanism is subtly designed for each hard constraint.Results indicate that the rectangular collision detection method can effective-ly prevent and judge the collision and blocking situation between aircrafts.Meanwhile,experimental results demonstrate the superiority of our designed algorithm on dynamic aircraft parking stand allocation problem.Furthermore,the intelligent allocation schemes can help to improve the efficiency and theflexibility of main-tenance process while ensuring maintenance safety,laying a good foundation for high-quality development.
作者 牛奔 张楚容 余俊 周天薇 Niu Ben;Zhang Churong;Yu Jun;Zhou Tianwei(College of Management,Shenzhen University,Shenzhen 518000,China;Institute of Science and Technology,Niigata University,Niigata 950-2181,Japan)
出处 《系统工程学报》 CSCD 北大核心 2024年第3期413-427,共15页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(72334004,62103286,71971143) 广东省哲学社科规划项目(GD22XGL22,GD22CGL35) 广东省普通高校重点领域专项(2022ZDZX2054) 广东省自然基金资助项目(2024A1515011712,2024A1515030278) 广东省创新团队资助项目(2021WCXTD002).
关键词 飞机动态泊位 维修时间窗 细菌觅食优化算法 自适应趋化学习策略 交叉协作策略 dynamic aircraft parking stand allocation maintenance time window bacterial foraging optimiza-tion algorithm self-adaptive learning strategy cross-collaboration strategy
  • 相关文献

参考文献6

二级参考文献35

  • 1王来军,史忠科.航班离场排序问题的遗传算法设计[J].系统工程理论与实践,2005,25(9):119-125. 被引量:18
  • 2胡小兵,黄席樾.基于蚁群优化算法的0-1背包问题求解[J].系统工程学报,2005,20(5):520-523. 被引量:24
  • 3Gosling G D. Design of an expert system for air- craft gate assignment[J]. Transportation Re. arch, 1990, 24(1): 59 69.
  • 4Eberhart R C, Kennedy J. A new optimizer using particles swarm theory [A]. Proc Sixth International Symposium on Micro Machine and Human Science [C]. Nagoya, Japan,1995.30 43.
  • 5Y. Liu,K.M. Passino.Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors[J]. Journal of Optimization Theory and Applications . 2002 (3)
  • 6Dong Hwa Kim,Ajith Abraham,Jae Hoon Cho.A hybrid genetic algorithm and bacterial foraging approach for global optimization[J]. Information Sciences . 2007 (18)
  • 7Kennedy J,Mendes R.Population structure and particle swarm performance. Proceedings of the IEEE Congress on Evolutionary Computation . 2002
  • 8J. J. Liang,A. K. Qin,P. N. Suganthan,S. Baskar.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation . 2006
  • 9Passino K M.Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine . 2002
  • 10Ben Niu,Hong Wang,Binggen Zhang.??Bacterial Colony Optimization(J)Discrete Dynamics in Nature and Society . 2012

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部