期刊文献+

基于多核PC的软件雷达信号积累和恒虚警处理研究

Research into Software Radar Signal Accumulation and CFAR Processing Based on Multi-core PC
下载PDF
导出
摘要 积累的本质是提高信噪比,以利于信号检测;恒虚警率处理的本质是在保证一定检测概率的基础上,用一个自适应门限代替固定门限,以保持虚警率的恒定,同时减小后端处理的压力,二者都是雷达信号处理系统的重要组成部分。在软件化雷达思想的指导下,针对雷达视频信号的积累和恒虚警率处理的实时性问题进行了研究。首先给出了积累和单元平均类恒虚警率处理的仿真模型,然后对积累和单元平均类恒虚警率处理的运算复杂度进行了详细的分析,接着采用集成性能原件(IPP)算法库和常规计算方法对积累和单元平均类恒虚警处理的运算时间进行仿真研究,最后通过实际软件实现,表明了在一定条件下,软件实现积累和恒虚警率可以满足实时性要求。 The essence of accumulation is to improve signal-to-noise ratio(SNR)for signal detection.The essence of constant false alarm rate(CFAR)is to keep false alarm rate constant and reduce the pressure of rear processing based on fined detection probability by using adaptive threshold instead of fixed threshold.Both are important parts of radar signal processing system.Under the guidance of the idea of software-based radar,this paper studies the accumulation of radar video signals and the real-time problem of CFAR processing.Firstly,this paper gives a simulation model for accumulation and cell average CFAR processing,then analyzes the computing complexity of accumulation and cell average CFAR in detail,and then uses integrated performance primitives(IPP)algorithm library and conventional calculation method to simulate the calculation time of accumulation and cell average CFAR processing,finally realizes it through actual software,which shows that under certain conditions,implementing accumulation and CFAR with software can meet the real-time performance.
作者 徐文利 邵正途 易凡 孟浩 杨光明 XU Wenli;SHAO Zhengtu;YI Fan;MENG Hao;YANG Guangming(Air Force Early Warning Academy,Wuhan 430019,China)
机构地区 空军预警学院
出处 《舰船电子对抗》 2024年第3期63-66,共4页 Shipboard Electronic Countermeasure
关键词 多核PC 软件化雷达 非相参积累 恒虚警率 集成性能原件(IPP)算法 multi-core PC software radar noncoherent accumulation constant false alarm rate,integrated performance primitives(IPP)algorithom
  • 相关文献

参考文献7

二级参考文献26

  • 1贾可,李世丹,郭燕,王德生.基于GPU的软件化雷达恒虚警概率算法实现[J].信息与电子工程,2012,10(5):525-527. 被引量:7
  • 2LinC,SynderL.并行程序设计原理[M].陆鑫达,林新华,译.北京:机械工业出版社,2009:101-195.
  • 3Jim B, Bettersworth M. High performance computing[R]. Texas: Texas State Technical College, 2005.
  • 4Chen L, Hu Z A, Lin J M. Optimizing the fast fourier transform on a multi-core architecture[A]. In: All S. Proceedings 21st international parallel and distributed processing symposium[C]. Long Beach: IEEE PRESS, 2007.1-8.
  • 5Rauber T, Runger C. Pparallel programming for multicore and cluster systems[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2010.
  • 6Nickolls J, Buck T, Garland M, et al. Scalable parallel programming with CUDA[J]. ACM Queue, 2008, 6 (2) : 40-53.
  • 7Weber R, Gothandaraman A, Hinde R J, et al. Comparing hardware accelerators in scientific applications: A Case study[J]. IEEE Transactions and Distributed System, 2009, 6 ( 1 ) : 1-12.
  • 8Saed T R,Ali J K,Yassen Z T. An FPGA Based Implementation of CA-CFAR Processor[J].Asian Journal of Information Technology,2007,(04):511-514.
  • 9Grydeland T,Lind F D,Erickson P J. Software Radar Signal Processing[J].Annales Geophysicae,2005,(01):109-121.doi:10.5194/angeo-23-109-2005.
  • 10NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version 4.1[EB/OL].http://developer.nvidia.com/category/zone/cuda-zone,2011.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部