期刊文献+

基于分组学习粒子群算法的众包软件项目调度

Crowdsourcing software project scheduling based on group learning particle swarm optimization algorithm
下载PDF
导出
摘要 为解决众包软件项目调度问题中的开发者选择、任务分配和投入度确定3个强耦合子问题,引入开发者信誉度,考虑技能、工作时长、开发团队规模等约束,以项目完成质量和工期为目标建立数学模型。提出一种采用三段式混合编码的分组学习粒子群算法求解所建模型。所提算法根据适应度排序将种群划分为3组,不同分组的粒子数量随进化代数自适应变化,且各组根据不同的适应度采用不同的更新策略。将所提算法与10种具有代表性的算法在12个不同规模的众包软件项目调度算例中进行对比,结果表明,所提算法能够获得精度更高的调度方案。 To solve the three coupled subproblems of the crowdsourcing software project scheduling including developer selection,task assignment and determination of the dedications,by introducing the reputation of the developers and considering the constraints such as task skills,working hours and team size,a mathematical model was constructed aiming to maximize the completion quality and minimize the project duration simultaneously.A group learning particle swarm optimization algorithm was proposed to solve the model,which adopted a three-segment hybrid encoding method and divided the population into three groups according to the fitness ranking.The number of particles in different groups changed adaptively with the evolutionary generation,and each group employed distinct update strategies according to the differences of fitness values.The proposed algorithm was compared with 10 representative algorithms on 12 instances with different scales.Experimental results showed that the proposed algorithm could obtain a scheduling solution with higher precision.
作者 申晓宁 徐继勇 姚铖滨 宋丽妍 SHEN Xiaoning;XU Jiyong;YAO Chengbin;SONG Liyan(School of Automation,Nanjing University of Information Engineering,Nanjing 210044,China;Jiangsu Provincial Atmospheric Environment and Equipment Technology Collaborative Innovation Center,Nanjing 210044,China;Jiangsu Provincial Key Laboratory of Big Data Analysis Technology,Nanjing 210044,China;Guangdong Provincial Key Laboratory of Brain Intelligent Computing,Southern University of Science and Technology,Shenzhen 518055,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2024年第6期2056-2068,共13页 Computer Integrated Manufacturing Systems
基金 广东省重点实验室资助项目(2020B121201001) 国家自然科学基金资助项目(61502239,62002148) 江苏省自然科学基金资助项目(BK20150924)。
关键词 众包软件项目调度 粒子群优化 分组学习 混合编码 信誉度 crowdsourcing software project scheduling particle swarm optimization group learning hybrid encoding reputation
  • 相关文献

参考文献5

二级参考文献34

  • 1张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4216. 被引量:32
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of the International Conference on Neural Network. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.
  • 3Montalvo I, Izquierdo J, Pérez-Garcia R, et al. Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems[J]. Engineering Applications of Artificial Intelligence, 2010, 23(5): 727-735.
  • 4Iwasaki N, Yasuda K, Ueno G. Particle swarm optimization: Dynamic parameter adjustment using swarm activity[C]//2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2008: 2634-2639.
  • 5Arasomwan M A, Adewumi A O. On adaptive chaotic inertia weights in particle swarm optimization[C]//2013 IEEE Symposium on Swarm Intelligence. Piscataway, NJ, USA: IEEE, 2013: 72-79.
  • 6Suganthan P N. Particle swarm optimiser with neighbourhood operator[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE: 1958-1965.
  • 7Zhan Z H, Xiao J, Zhang J, et al. Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis[C]//IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2007: 3276-3282.
  • 8Hashemi A B, Meybodi M R. A note on the learning automata based algorithms for adaptive parameter selection in PSO[J]. Applied Soft Computing, 2011, 11(1): 689-705.
  • 9Wei J X, Jia L P. A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2013: 2436-2443.
  • 10Tang J, Zhao X J. Particle swarm optimization using adaptive local search[C]//Proceedings of the International Conference on Future Biomedical Information Engineering. Piscataway, NJ, USA: IEEE, 2009: 300-303.

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部