摘要
研究了一类带阻尼项的非线性脉冲双曲型方程的振动性问题。借助阻尼项的处理技巧及一阶脉冲时滞微分不等式的已有结果,得到了该类方程在Dirichlet边值条件下所有解振动的若干充分性判据。所得结论表明,脉冲量和时滞量均会影响方程的振动性。
The oscillation problem is investigated for a class of nonlinear impulsive delay hyperbolic equations with damping term.By employing the technique of treating damping term and some known results on first order impulsive delay differential inequalities,some sufficient criteria are obtained for the oscillation of all solutions of such equations under Dirichlet's boundary value condition.The conclusions show that both the impulse and the delay affect the oscillation of the equation.
作者
罗李平
曾云辉
LUO Liping;ZENG Yunhui(College of Mathematics and Statistics,Hengyang Normal University,Hengyang 421002,Hunan Province,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2024年第4期434-437,442,共5页
Journal of Zhejiang University(Science Edition)
基金
湖南省自然科学基金资助项目(2022JJ90021,2022JJ50137)
湖南省教育厅科研项目(23C0234)。
关键词
振动性
双曲型方程
脉冲
时滞
阻尼项
oscillation
hyperbolic equations
impulse
delay
damping term