摘要
准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。
Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems.In this paper,a prediction model that incorporates variable selection and sparse Transformer is proposed.Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range.The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output.A two-layer coding structure is designed for temporal feature extraction,attention is sparse,and future moment loads are predicted by multivariate inputs.The proposed model is validated using real power load data,and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.
作者
黄文琦
梁凌宇
王鑫
赵翔宇
宗珂
孙凌云
HUANG Wenqi;LIANG Lingyu;WANG Xin;ZHAO Xiangyu;ZONG Ke;SUN Lingyun(China Southern Power Grid Digital Grid Research Institute Co.,Ltd.,Guangzhou 510663,China;Zhejiang University-China Southern Power Grid Joint Research Centre on AI,Hangzhou 310058,China;College of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China;College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2024年第4期483-491,500,共10页
Journal of Zhejiang University(Science Edition)
基金
国家重点研发计划项目(2020YFB0906000,2020YFB09060005,2020YFB0906004)。