期刊文献+

基于利率贴现模型的随机占优比较

Stochastic dominance comparisons based on interest discount model
下载PDF
导出
摘要 建立单笔投资的利率贴现模型按照一阶随机占优序、二阶随机占优序以及风险偏好型随机占优序递减的充分条件。若组合系数按超优序递减,投资组合情况下的利率贴现模型按照二阶随机占优序、风险偏好型随机占优序递减的充分条件也做了分析。 The sufficient conditions for interest discount models increasing in the sense of the first-order stochastic dominance,the second-order stochastic dominance,and the risk-loving stochastic dominance were first given in this paper.We also obtained the sufficient conditions for weighted interest discount models increasing in the sense of the second-order stochastic dominance,and the risk-loving stochastic dominance when the weights decrease in the sense of the majorization order.
作者 庄玮玮 杜先杨 邱国新 ZHUANG Weiwei;DU Xianyang;QIU Guoxin(School of Management,University of Science and Technology of China,Hefei 230026,China;School of Business,Xinhua University of Anhui,Hefei 230088,China)
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第4期433-441,共9页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(71971204,71871208,11701518) 安徽省自然科学基金(1908085MG236,2208085J43)资助。
关键词 随机占优 超优 利率贴现模型 投资组合 stochastic dominance majorization interest discount model portfolios
  • 相关文献

参考文献2

二级参考文献8

  • 1Stout W F. Almost sure convergence[ M]. New York:Academic Press, 1974.
  • 2Gut A. Law of the iterated logarithm for subsequences[ J]. Probab Math Statist, 1986, 7( 1 ) : 27-58.
  • 3Schwabe R,Gut A. On the law of the iterated logarithm for rapidly increasing subsequences[ J]. Math Nachr, 1996, 178 (2) : 309-320.
  • 4Torrang I. Law of the iterated logarithm - cluster points of deterministic and random subsequences[ J]. Probab Math Statist, 198"/, 8 (1) : 133-141.
  • 5Chow Y S, Teieher S, Wei C Z, et al. Iterated logarithm laws with random subsequences[ J]. Z W Verw Gebiete, 1981,57(2) : 235-251.
  • 6Divanji G. Law of iterated logarithm and almost sure limit points for random sums[ J]. Stitist Meth, 2006, 3: 398-405.
  • 7Vasudeva R, Divanji G. Law of iterated logarithm for random subsequences [J]. Stitist Probab Lett, 1991, 12 : 189-194.
  • 8Gut A. Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices[ J]. Ann Prob, 1980, 8(1/2) : 298-313.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部