期刊文献+

基于人工智能的运营商故障分析能力提升研究

Research on Improving Fault Analysis Capability of Operators Based on Artificial Intelligence
下载PDF
导出
摘要 传统的故障分析手段将运维经验固化为故障分析规则或脚本,这种方式针对特定故障模式较为有效,但是无法应对新网络业务、组网变化,一旦规则、脚本需要调整,需投入较大成本进行适配改造,且时效性较差。而人工智能技术在大数据统计、分析、推理、自适应学习上有着先天优势,能快速基于新网络、新业务的变化重训练AI模型参数,给出最佳推荐值。基于此,重点研究了如何利用人工智能提升运营商故障分析能力。 Traditional fault analysis methods are fixed into fault analysis rules or scripts based on O&M experience.This method is effective for specific fault modes,but cannot cope with new network service and networking changes.Once these rules and scripts need to be adjusted,a large cost is required for adaptation and reconstruction,and the timeliness is poor.Artificial intelligence technology has inherent advantages in big data statistics,analysis,inference,and adaptive learning.It can quickly retrain AI model parameters based on changes in new networks and businesses,and provides the best recommendation value.Based on this,it focus on the research of using artificial intelligence to improve the fault analysis capability of operators.
作者 朱宏 邓程 王瑜 宋文杰 Zhu Hong;Deng Cheng;Wang Yu;Song Wenjie(Intelligent Network&Innovation Center of China Unicom,Nanjing 210019,China)
出处 《邮电设计技术》 2024年第6期72-77,共6页 Designing Techniques of Posts and Telecommunications
关键词 故障分析 智能分析 人工智能 大数据 网络运维 Fault analysis Intelligent analysis Artificial intelligence Big data Network O&M
  • 相关文献

参考文献2

二级参考文献33

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部