期刊文献+

基于自注意力机制生成对抗网络的医学图像生成

Medical image generation based on improved generative adversarial
下载PDF
导出
摘要 针对图像生成算法中生成对抗网络训练效率低且不稳定和原始乳腺癌数据集分布不均匀等问题,提出一种改进的SAGAN模型,在生成图像任务中表现更好,相较传统SAGAN、GAN、DCGAN模型,它的关键改进是使用ReLU6激活函数和铰链损失函数,取代了原有的ReLU激活函数和二分类平衡交叉熵损失函数,这些改进提高了生成图像的质量、多样性和训练稳定性。实验结果表明,改进的SAGAN的D-Loss相较传统SAGAN下降了0.114,均方误差(MSE)下降了0.09,结构相似性(SSIM)增加了0.04。说明改进的SAGAN在生成高质量图像和更好地保留图像结构方面具有优势。 Aiming at the problems of low and unstable training efficiency of generative adversarial networks and uneven distribution of the original breast cancer dataset in image generation algorithms,this paper proposes an improved SAGAN model,which performs better in the task of generating images,and compared with the traditional SAGAN and GAN,DCGAN models,its key improvement is the use of the ReLU6 activation function and the hinge loss function,instead of the original ReLU activation function and binary balanced cross-entropy loss function,and these improvements improve the quality,diversity and training stability of the generated images.The experimental results show that the D-Loss of the improved SAGAN decreases by 0.114,the mean square error(MSE)decreases by 0.09,and the structural similarity(SSIM)increases by 0.04 compared tOthe conventional SAGAN.This indicates that the improved SAGAN has an advantage in generating high-quality images and better preserving the image structure.
作者 邰志艳 李黛黛 刘铭 TAI Zhiyan;LI Daidai;LIU Ming(School of Mathematics&Statistics,Changchun University of Technology,Changchun 130012,China)
出处 《长春工业大学学报》 CAS 2024年第3期208-215,共8页 Journal of Changchun University of Technology
基金 吉林省发改委省预算内基本建设资金(2022C043-2) 吉林省科技厅自然科学基金项目(20200201157JC)。
关键词 图像生成 GAN SAGAN 医学图像 image generation GAN SAGAN medical imaging.
  • 相关文献

参考文献8

二级参考文献47

  • 1刘进,厉树忠,张媛.基于混合中值滤波的图像去噪处理[J].甘肃科技,2006,22(9):41-43. 被引量:15
  • 2GONZALEZ R C, WOOD R E. Digital image processing[M ]. 2rd ed. Beijing: Publishing House of E- lectronics Industry, 2002.
  • 3BROWNRIGC- D. The weighted median filter[J]. Cornmunication Association Computer Machine, 1984,27 (8) 807-818.
  • 4KO S J, LEE S J. Center weighted median filter and their applications to image enhancement [J ]. IEEE Transactions on Circuits and System, 1991, 38 (1) 984 - 993.
  • 5胡旺,李志蜀,黄奇.基于双窗口和极值压缩的自适应中值滤波[J].中国图象图形学报,2007,12(1):43-50. 被引量:20
  • 6Bradski G R. Real-time face and object tracking as a component of a perceptual user interface[A].Washington D C,USA:IEEE Computer Society,1998.214-219.
  • 7Bradski G R. Computer vision face tracking for use in a perceptual user interface[J].Intel Technology Journal(51535-864X),1998,(02):1-15.
  • 8Wang Zhaowen,Yang Xiaokang,Xu Yi,Yu Songyu. CamShift guided particle filter for visual tracking[J].Pattern Recognition Letters,2009,(04):407-413.
  • 9Ruiming Liu,Xuelong Li,Lei Han,Jiao Meng. Track infrared point targets based on projection coefficient templates and non-linear correlation combined with Kalman prediction[J].Infrared Physics and Technology,2013,(03):68-75.
  • 10Karavasilis V,Nikou C,Likas A. Visual tracking using the Earth mover's distance between Gaussian mixtures and Kalman filtering[J].IMAGE AND VISION COMPUTING,2011,(04):295-305.

共引文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部