摘要
文章采用光纤通信、分布式大数据平台、长短期记忆(Long Short-Term Memory,LSTM)网络以及XGBoost算法等先进技术手段,从数据采集传输、存储管理、负荷预测建模以及结果展示交互等方面,全面设计和实现电力负荷预测系统。实验结果表明,该系统能够在保证数据传输可靠性的同时,显著提高负荷预测的精度,证实该系统在实际电网应用中具有可行性和有效性,能够为电网规划和运行管理提供有力支撑。
In this paper,advanced technologies such as optical fiber communication,distributed big data platform,Long Short Term Memory(LSTM)network and XGBoost algorithm are adopted,and the power load forecasting system is comprehensively designed and implemented from the aspects of data collection and transmission,storage management,load forecasting modeling and result display interaction.The experimental results show that the system can significantly improve the accuracy of load forecasting while ensuring the reliability of data transmission,which proves that the system is feasible and effective in the actual power grid application and can provide strong support for power grid planning and operation management.
作者
刘英
LIU Ying(State Grid Hebei Electric Power Co.,Ltd.,Xinhe County Power Supply Branch,Xingtai 055650,China)
出处
《通信电源技术》
2024年第12期10-12,共3页
Telecom Power Technology