期刊文献+

基于人工智能的计算机电路系统故障检测与诊断技术研究

Research on Fault Detection and Diagnosis Technology for Computer Circuit Systems Based on Artificial Intelligence
下载PDF
导出
摘要 文章旨在探讨基于人工智能的故障检测与诊断技术在计算机电路系统中的应用。通过综述当前电路系统故障检测与诊断技术的发展现状,分析其局限性与挑战,引出基于人工智能的解决方案。研究当前机器学习和深度学习在故障检测中的关键技术,如数据预处理、特征提取以及模型训练。借助机器学习算法高效识别电路系统中的潜在故障模式,并实现准确的故障诊断。此外,强调基于人工智能的故障检测与诊断技术在提高电路系统可靠性和维护效率方面的巨大潜力,为未来智能化维护系统的发展提供了重要启示。 This paper aims to explore the application of artificial intelligence-based fault detection and diagnosis technology in computer circuit systems.By reviewing the current development status of fault detection and diagnosis technology in circuit systems,analyzing its limitations and challenges,the solution based on artificial intelligence is introduced.The paper studies the key technologies of machine learning and deep learning in fault detection,such as data preprocessing,feature extraction,and model training.By efficiently identifying potential fault patterns in circuit systems and achieving accurate fault diagnosis through machine learning algorithms.In addition,it emphasizes the enormous potential of artificial intelligence based fault detection and diagnosis technology in improving the reliability and maintenance efficiency of circuit systems,providing important insights for the development of future intelligent maintenance systems.
作者 乔泽鹏 杨灿 杨宇 左恒铭 QIAO Zepeng;YANG Can;YANG Yu;ZUO Hengming(Tianjin College,University of Science and Technology Beijing,Tianjin 301800,China)
出处 《通信电源技术》 2024年第12期245-248,共4页 Telecom Power Technology
关键词 人工智能 机器学习 计算机电路 故障检测诊断 artificial intelligence machine learning computer circuit fault detection and diagnosis
  • 相关文献

参考文献5

二级参考文献47

  • 1张洁,蔡然.电力设备状态监测与故障诊断技术分析[J].电子技术(上海),2021,50(12):274-275. 被引量:10
  • 2杨先明,叶玉堂,吴云峰,吴金谦,成志强,方亮.TIP-I红外电路故障检测仪的设计[J].激光与红外,2006,36(6):463-465. 被引量:5
  • 3Liu Xiaoqin, Wang Dazhi. Wavelet neural networks based fault diagnosis of analog circuit [ C ]//Proc of IEEE Chinese control and decision conference. [ s. 1. ] :IEEE,2012.
  • 4Guo Y, Ma J, Xiao F. SVM with optimized parameters and its application to electronic system fault diagnosis[ C]//Proceed- ings of IEEE ICPHM. Denver, CO, USA : IEEE ,2012.
  • 5Wang Z, Li H, Ma L. HHT based long term feature extracting method for speech emotion classiflcation [ C ]//Proceedings of IEEE ICALIP. Shanghai : IEEE ,2012:276-281.
  • 6Sen Y, Chen M. Research on method of analog circuit state recognition based on KPCA - SVDD [ C ]//Proc of the 10th IEEE international conference on computer science and elec- tronics engineering. Hong Kong : IEEE ,2012:498-500.
  • 7Shen F,Song Z,Zhou L. Improved PCA-SVDD based monito- ring method for nonlinear process [ C ]//Proc of the 25th Chi- nese control and decision conference. [ s. 1. ] : [ s. n. ] ,2013 : 4330-4336.
  • 8Niazmardi S, Homayouni S, Safari A. An improved FCM algo- rithm based on the SVDD for unsupervised hyperspectral data classification[ J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6 ( 2 ) : 831 - g39.
  • 9周科峰.变电设备在线监测与故障诊断技术[J].江西电力,2009,33(1):20-22. 被引量:8
  • 10龚镇,李运祯.基于红外温度变化规律诊断电路故障[J].电子技术(上海),2009(8):37-38. 被引量:5

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部