期刊文献+

基于GA优化神经网络的变刚度复合材料板簧刚强度预测研究

Research on Stiffness and Strength Prediction of Variable Stiffness Composite Leaf Spring Based on GA-Optimized Neural Network
下载PDF
导出
摘要 将形状记忆合金混编三维织物驱动器(SMA驱动器)植入复合材料板簧中,可以使大型板式结构具有变刚度潜力。为提高驱动器空间布置参数的寻优效率,文章基于BP神经网络预测不同驱动器布置参数下的板簧刚强度,并采用遗传算法提升预测精度。结果表明,经过遗传算法(Genetic Algorithm,GA)优化后的BP神经网络(Back Propagation Neural Networks)模型对板簧刚强度性能的平均预测精度为96.9%,优于传统BP神经网络的平均预测精度(92.7%),并且寻优效率比传统智能算法提升了172倍。该研究为大型板式结构的空间布置参数寻优算法提供了有益参考。 Embedding Shape Memory Alloy composite 3D fabric actuators(SMA actuators)into composite leaf spring can endow large plate-like structures with variable stiffness potential.To enhance the optimization efficiency of space layout parameters of actuators,this study uses a BP(Back Propagation)neural network to predict the leaf spring strength under different actuator layout parameters and employs Genetic Algorithm(GA)to improve prediction accuracy.Results show that the BPNN(Back Propagation Neural Network)model optimized by GA achieves an average prediction accuracy of 96.9%for leaf spring strength performance,outperforming the average prediction accuracy of traditional BPNN(92.7%),and enhancing optimization efficiency by 172 times compared to traditional intelligent algorithms.This research provides valuable insights for optimizing the space layout parameters of large plate-like structures.
作者 杨寅泽 柯俊 YANG Yinze;KE Jun(College of Mechanical Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《软件工程》 2024年第7期17-21,共5页 Software Engineering
基金 国家自然科学基金(52102430)。
关键词 SMA驱动器 空间布置参数 BP神经网络 遗传算法 寻优效率 SMA actuators space layout parameters BP Neural Networks(BPNN) GA optimization efficiency
  • 相关文献

参考文献6

二级参考文献57

  • 1钱东伶,芦富敏,余忠土,张恒华,杨弋涛.汽车底盘用铸造铝合金的研究进展[J].特种铸造及有色合金,2020,40(10):1077-1082. 被引量:16
  • 2冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程,2006,28(3):213-220. 被引量:142
  • 3黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18. 被引量:140
  • 4Sunar M,Rao S S. Recent advances in sensing and control of flexible structures via piezoelectric materials technology [ J ]. Applied Mechanics Review,1999, 52:1 -16.
  • 5Zheng S J, Dai F, Feng Y. Active control of piezothermoelastic fgm shells using integrated piezoelectric sensor / actuator layers[J]. International Journal of Applied Electro-magnetics and Mechanics, 2009, 30: 107- 124.
  • 6Ichiki M, Morikawa Y, Mabune Y, et al. Preparation and photo-induced properties of lead lanthanum zireonate titanate muhilayers [J]. Journal of Physics, D : Applied Physics, 2004, 37:3017 - 3024.
  • 7Shih H R, Tzou H S, Saypuria M, Structural vibration control using spatially configured optoelectro-mechanical actuators [J]. Journal of Sound and Vibration, 2005, 284:361 -378.
  • 8Shih H R, Smith R, Tzou H S. Photonic control of cylindrical shells with electro-optic photostrictive actuators [J]. Aiaa Journal, 2004, 42(2) : 341 -347.
  • 9Yue H H, Sun G L, Deng Z Q, et al. Distributed shell control with a new multi-DOF photostrictive actuator design [J]. Journal of Sound and Vibration, 2010, 329: 3647 - 3659.
  • 10Sun D C , Tong L Y. Theoretical invest-tigation on wireless vibration control of thin beams using photostrictive actuators [ J ]. Journal of Sound and Vibration,2008,312:182 -194.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部