期刊文献+

基于生成式人工智能的科普内容生成路径

Generation path of popular science content based on generative artificial intelligence
下载PDF
导出
摘要 以ChatGPT为代表的通用型生成式人工智能模型的诞生掀起了AIGC变革的浪潮。在国防科普领域,结合生成式AI能够做什么,怎么做,以及有什么局限性,都值得关注和探讨。回顾预训练自然语言大模型的发展历史,探析基于ChatGPT和百度文心一言模型的科普文本生成路径,以及基于文心一格和Stable Diffusion的科普图片生成路径,归纳总结基于人工智能内容生成(AIGC)的国防科普内容生成路径,并总结基于生成式AI模型进行国防科普面临的问题与解决思路。 The emergence of generative artificial intelligence(AI)models,such as ChatGPT,has triggered a transformative wave in AI-generated content(AIGC).It is imperative to explore the possibilities,methodologies,and limitations of integrating generative AI in the realm of popularizing national defense technology.The developmental history of pretraining natural language models is examined in this study,and the generation paths of popular science text based on ChatGPT and ERNIE Bot,as well as popular science pictures based on Stable Diffusion and ERNIE Image Style,are analyzed.Subsequently,the AIGC-based generation path of the popular science content related to national defense technology is discussed.The challenges and solutions encountered in the popularization of national defense technology through generative AI models are summarized.
作者 李悦丽 付强 刘可 LI Yueli;FU Qiang;LIU Ke(College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China)
出处 《国防科技》 2024年第3期10-17,共8页 National Defense Technology
关键词 ChatGPT 生成式人工智能 国防科普 人工智能内容生成 ChatGPT generative AI popularization of national defense technology AIGC
  • 相关文献

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部