摘要
面向国防科技前沿细颗粒领域主题出现的不平衡数据分类问题,提出一种基于融合特征的国防科技前沿主题识别与分类模型。该模型在基于Sentence-BERT预训练模型提取的语义特征基础上,融合基于命名实体识别技术提取的实体特征,实现面向国防科技前沿领域特定专题的追踪、监测能力构建。实验结果表明,融合特征主题识别与分类模型有较好的模型指标。该模型已在具体实践中取得一定成效。
A feature fusion subject identification and classification model based on deep learning to address the imbalanced data classification problem affecting fine-grained subjects in the field of defense science and technology frontiers is proposed.Based on the semantic features extracted using the Sentence-BERT pre-trained model,the proposed model fuses the entity features extracted with the help of the named entity recognition technology and establishes tracking and monitoring capabilities for specific subjects in the field of defense science and technology frontiers.The experimental results show superior model performance.The model has been practically applied and has achieved noticeable results.
作者
刘任烨
于凯
LIU Renye;YU Kai(Chengdu Aircraft Design&Research Institute,Chengdu 610091,China)
出处
《国防科技》
2024年第3期58-65,共8页
National Defense Technology
关键词
国防科技前沿
主题识别
融合特征
语义相似度
命名实体识别
defense science and technology frontier
subject identification
fusion feature
semantic similarity
named entity recognition