期刊文献+

基于多源异构数据融合的台区负荷预测方法

Load Forecasting Method for Substations Based on Multi-Source Heterogeneous Data Fusion
下载PDF
导出
摘要 随着大数据技术的飞速发展,多源异构数据的融合技术逐渐被应用于智慧城市的治理和发展。使用基于多源异构数据融合的台区负荷预测方法,通过整合来自不同台区的多样化数据,以全面且准确地获取台区信息。通过多源异构数据融合技术,对信息进行选择与融合,实现台区负荷的最优预测,以提高预测精度和可靠性。 With the rapid development of big data technology,the fusion technology of multi-source heterogeneous data is applied to the governance and development of smart cities.Using a substation load forecasting method based on multi-source heterogeneous data fusion,by integrating diverse data from different substations,comprehensive and accurate substation information can be obtained.Through multi-source heterogeneous data fusion technology,information is selected and fused to achieve optimal load prediction in the substation area,in order to improve prediction accuracy and reliability.
作者 胡可涵 HU Kehan(Urumqi Power Supply Company,State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi,Xinjiang 830000,China)
出处 《自动化应用》 2024年第12期79-81,共3页 Automation Application
关键词 台区负荷 多源异构数据融合 大数据 substation load multi-source heterogeneous data fusion big data
  • 相关文献

参考文献7

二级参考文献70

  • 1倪文峰,王忠宾,李舒斌,王磊磊,孟凡旺.基于虚拟机的采煤机远程监控平台关键技术[J].煤炭科学技术,2009,37(2):76-78. 被引量:9
  • 2赵军,金千里,徐波.面向文本检索的语义计算[J].计算机学报,2005,28(12):2068-2078. 被引量:28
  • 3张建文,张于江.基于多传感器的电牵引采煤机综合监测系统[J].电气应用,2007,26(9):114-117. 被引量:11
  • 4Nakamura E F, Loureiro A A F, Frery A C. Information fusion for wireless sensor networks: Methods, models, andclassfications. ACM Comput Surv, 2007, 39: A9/1-55.
  • 5Xiao J, Ribeiro A, Luo Z, et al. Distributed compression-estimation using wireless sensor networks. IEEE SignalProcess Mag, 2006, 23: 27-41.
  • 6Yuan Y, Kam M. Distributed decision fusion with a random-access channel for sensor network applications. IEEETrans Instrum Meas, 2004, 53: 1339-1344.
  • 7Guestrin C,Bodik P, Thibaux R,et al. Distributed regression: An efficient framework for modeling sensor networkdata. In: Proceedings of the International Symposium on Information Processing in Sensor Networks. Berkeley: IEEEComputer Society Press, 2004. 1-10.
  • 8Willett R, Martin A, Nowak R. Backcasting: Adaptive sampling for sensor networks. In: Proceedings of the Inter-national Symposium on Information Processing in Sensor Networks. Berkeley: IEEE Computer Society Press, 2004.124-133.
  • 9JinG, Nittel S. NED: An efficient noise-tolerant event and event boundary detection algorithm in wireless sensornetworks. In: Proceedings of the International Conference on Mobile Data Management. Nara: IEEE ComputerSociety Press, 2006. 153-161.
  • 10Jain A, Chang E, Wang Y. Adaptive stream resource management using Kalman filters. In: Proceedings of the ACMSIGMOD International Conference on Management of Data. Paris: ACM Special Interest Group on Management ofData, 2004. 11-22.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部